Toggle light / dark theme

New, reversible CRISPR method can control gene expression while leaving underlying DNA sequence unchanged.

Over the past decade, the CRISPR-Cas9 gene editing system has revolutionized genetic engineering, allowing scientists to make targeted changes to organisms’ DNA. While the system could potentially be useful in treating a variety of diseases, CRISPR-Cas9 editing involves cutting DNA strands, leading to permanent changes to the cell’s genetic material.

Now, in a paper published online in Cell on April 9, researchers describe a new gene editing technology called CRISPRoff that allows researchers to control gene expression with high specificity while leaving the sequence of the DNA unchanged. Designed by Whitehead Institute Member Jonathan Weissman, University of California San Francisco assistant professor Luke Gilbert, Weissman lab postdoc James Nuñez and collaborators, the method is stable enough to be inherited through hundreds of cell divisions, and is also fully reversible.

Although universal fault-tolerant quantum computers – with millions of physical quantum bits (or qubits) – may be a decade or two away, quantum computing research continues apace. It has been hypothesized that quantum computers will one day revolutionize information processing across a host of military and civilian applications from pharmaceuticals discovery, to advanced batteries, to machine learning, to cryptography. A key missing element in the race toward fault-tolerant quantum systems, however, is meaningful metrics to quantify how useful or transformative large quantum computers will actually be once they exist.

To provide standards against which to measure quantum computing progress and drive current research toward specific goals, DARPA announced its Quantum Benchmarking program. Its aim is to re-invent key quantum computing metrics, make those metrics testable, and estimate the required quantum and classical resources needed to reach critical performance thresholds.

“It’s really about developing quantum computing yardsticks that can accurately measure what’s important to focus on in the race toward large, fault-tolerant quantum computers,” said Joe Altepeter, program manager in DARPA’s Defense Sciences Office. “Building a useful quantum computer is really hard, and it’s important to make sure we’re using the right metrics to guide our progress towards that goal. If building a useful quantum computer is like building the first rocket to the moon, we want to make sure we’re not quantifying progress toward that goal by measuring how high our planes can fly.”

Electronic oscillators lie at the heart of virtually all microelectronic systems, generating the clock signals used in digital electronics and the precise frequencies that enable radio frequency (RF) sensors and communications. While an ideal oscillator provides a perfect signal at a single frequency, imperfections degrade the spectral purity of real-world components.

Such impairments, broadly quantified as phase noise, ultimately limit the performance of many military radars and commercial 5G systems. The issue is becoming increasingly burdensome as the airways become more congested and defense needs evolve.

Fueled by the need for faster life sciences and healthcare research, especially in the wake of the deadly COVID-19 pandemic, IBM and the 100-year-old Cleveland Clinic are partnering to bolster the Clinic’s research capabilities by integrating a wide range of IBM’s advanced technologies in quantum computing, AI and the cloud.

Access to IBM’s quantum systems has so far been primarily cloud-based, but IBM is providing the Cleveland Clinic with IBM’s first private-sector, on-premises quantum computer in the U.S. Scheduled for delivery next year, the initial IBM Quantum System One will harness between 50 to 100 qubits, according to IBM, but the goal is to stand up a more powerful, more advanced, next-generation 1000+ qubit quantum system at the Clinic as the project matures.

For the Cleveland Clinic, the 10-year partnership with IBM will add huge research capabilities and power as part of an all-new Discovery Center being created at the Clinic’s campus in Cleveland, Ohio. The Accelerator will serve as the technology foundation for the Clinic’s new Global Center for Pathogen Research & Human Health, which is being developed to drive research in areas including genomics, single-cell transcriptomics, population health, clinical applications and chemical and drug discovery, according to the Clinic.

Vendor Spotlight

IBM and NVIDIA announced the two companies have formed a multi-year strategic alliance under which IBM will manufacture NVIDIA’s next-generation GeForce graphics processor units (GPUs).

State-of-the-art GPUs, like NVIDIA’s Geforce FX, have become process and manufacturing drivers. To deliver the immense computational power needed to create cinematic images in real-time, NVIDIA’s GPUs require the most sophisticated process technologies.

Daily injections of insulin are a hassle for the hundreds of millions of people with diabetes. An oral pill would be much easier to swallow (pun intended), and now researchers from New York University Abu Dhabi have developed a new method for packing insulin into capsules that can survive the trip through the stomach to the bloodstream, and only release their payload when it’s needed.

Diabetes is characterized by inconsistent levels of insulin, a hormone that regulates glucose levels in the blood. Normally the condition is managed with regular subcutaneous injections, but they can be difficult for patients to self-administer, and the unpleasantness may make some people skip doses.

In an ideal world, managing diabetes would be as simple as popping a pill, but unfortunately developing that kind of system has been tricky. Insulin is a fragile molecule that’s quickly broken down in the stomach before it can work its magic. Much of the challenge for scientists then is to find ways to package insulin so it survives long enough to permeate the intestinal wall to get into the bloodstream.

Summary: Researchers link the inflammation associated with chronic sinus infections to alterations in brain activity in networks that govern cognition, external stimuli, and introspection. The findings shed light on why people suffering from sinus infections often report poor concentration and other short-term cognitive problems.

Source: University of Washington.

The millions of people who have chronic sinusitis deal not only with stuffy noses and headaches, they also commonly struggle to focus, and experience depression and other symptoms that implicate the brain’s involvement in their illness.

TAE Technologies, the California, USA-based fusion energy technology company, has announced that its proprietary beam-driven field-reversed configuration (FRC) plasma generator has produced stable plasma at over 50 million degrees Celsius. The milestone has helped the company raise USD280 million in additional funding.

Norman — TAE’s USD150 million National Laboratory-scale device named after company founder, the late Norman Rostoker — was unveiled in May 2017 and reached first plasma in June of that year. The device achieved the latest milestone as part of a “well-choreographed sequence of campaigns” consisting of over 25000 fully-integrated fusion reactor core experiments. These experiments were optimised with the most advanced computing processes available, including machine learning from an ongoing collaboration with Google (which produced the Optometrist Algorithm) and processing power from the US Department of Energy’s INCITE programme that leverages exascale-level computing.

Plasma must be hot enough to enable sufficiently forceful collisions to cause fusion and sustain itself long enough to harness the power at will. These are known as the ‘hot enough’ and ‘long enough’ milestone. TAE said it had proved the ‘long enough’ component in 2015, after more than 100000 experiments. A year later, the company began building Norman, its fifth-generation device, to further test plasma temperature increases in pursuit of ‘hot enough’.

In recent years, Western brands including Nestlé (NSRGY), Impossible and Beyond Meat (BYND) have tapped into a growing appetite for such food and drinks in the West. Now, they’re headed east, raising fresh funding to target growth in the region, rolling out products specifically created for Asian consumers and setting up new factories on the ground.


Milo chocolate milk has been hugely popular in Southeast Asia for decades. Now the breakfast and teatime favorite is about to get shaken up — the cocoa powder will be offered as a dairy-free, ready-made beverage.

The product is one of Nestlé’s newest plant-based inventions, and it will be launched in the region this week, the company told CNN Business. Starting Thursday, the drink will hit supermarkets in Malaysia, and the Swiss multinational plans to sell it in other countries soon. (The company already offers plant-based Milo in Australia and New Zealand, but in the traditional powder form.)

“We are all about giving choices,” Juan Aranols, Nestlé’s Malaysia and Singapore chief, said in an interview. “We felt that with this growing interest for plant-based products, why not give the Milo taste everybody loves in a solution that is plant-based?”