Menu

Blog

Page 6764

Nov 13, 2020

Why making a real warp drive is possible

Posted by in categories: physics, space travel

Recent advances indicate that the idea could work.

Nov 13, 2020

SoftBank eyes smaller bets, bigger returns in Vision Fund rethink

Posted by in categories: biotech/medical, education, finance, government, health, wearables

The quiet shift in strategy, which brings the Vision Fund’s approach closer to that of a traditional venture capital investor, may ease concerns over big, bold bets going sour, a factor that has left a major gap between SoftBank’s market capitalization and the sum of its investments.


TOKYO — SoftBank Group’s Vision Fund is turning to a new strategy as a global pandemic and government stimulus distort tech valuations: Invest smaller in hopes for bigger returns.

After raising nearly $100 billion and investing $85 billion in high-profile companies like Uber Technologies, WeWork and ByteDance over three years, the Vision Fund is now focusing on making smaller bets in early-stage startups.

Continue reading “SoftBank eyes smaller bets, bigger returns in Vision Fund rethink” »

Nov 13, 2020

Medical drones take flight in the Netherlands for the first time

Posted by in categories: biotech/medical, drones

Over the next few months, medical delivery drones will take flight in the Netherlands between two hospitals to deliver emergency medicines, blood, and other time-sensitive samples. The drones will be flying between the Isala Diaconessenhuis Meppel hospital and the Isala Ziekenhuis hospital.

The drones are at the center of tests, looking at how they can deliver emergency medicine in the future and improve patient care. This also marks the first time drones have flown beyond visual line of sight (BVLOS) in overpopulated areas.

The tests are being run by the Medical Drone Service, an initiative set up by ANWB, PostNL, Erasmus MC, Isala, Sanquin, Certe, and technology partners Avy and KPN.

Nov 13, 2020

Why AI can’t move forward without diversity, equity, and inclusion

Posted by in categories: business, robotics/AI

The need to pursue racial justice is more urgent than ever, especially in the technology industry. The far-reaching scope and power of machine learning (ML) and artificial intelligence (AI) means that any gender and racial bias at the source is multiplied to the n th power in businesses and out in the world. The impact those technology biases have on society as a whole can’t be underestimated.

When decision-makers in tech companies simply don’t reflect the diversity of the general population, it profoundly affects how AI/ML products are conceived, developed, and implemented. Evolve, presented by VentureBeat on December 8th, is a 90-minute event exploring bias, racism, and the lack of diversity across AI product development and management, and why these issues can’t be ignored.

“A lot has been happening in 2020, from working remotely to the Black Lives Matter movement, and that has made everybody realize that diversity, equity, and inclusion is much more important than ever,” says Huma Abidi, senior director of AI software products and engineering at Intel – and one of the speakers at Evolve. “Organizations are engaging in discussions around flexible working, social justice, equity, privilege, and the importance of DEI.”

Nov 13, 2020

Pfizer’s announcement shows the promise of gene-based vaccines

Posted by in category: biotech/medical

Pfizer’s COVID-19 vaccine uses a gene-based platform that hasn’t been used for approved human vaccines. The reported high efficacy is a good sign for other vaccines using that approach.

Nov 13, 2020

New approach to circuit compression could deliver real-world quantum computers years ahead of schedule

Posted by in categories: computing, quantum physics

A major technical challenge for any practical, real-world quantum computer comes from the need for a large number of physical qubits to deal with errors that accumulate during computation. Such quantum error correction is resource-intensive and computationally time-consuming. But researchers have found an effective software method that enables significant compression of quantum circuits, relaxing the demands placed on hardware development.

Quantum computers may still be far from a commercial reality, but what is termed ‘quantum advantage’—the ability of a quantum to compute hundreds or thousands of times faster than a classical computer-has indeed been achieved on what are called Noisy Intermediate-Scale Quantum (NISQ) devices in early proof-of-principle experiments.

Unfortunately, NISQ devices are still prone to lots of errors that accumulate during their operation. For there to be any real-world application of quantum advantage, the design of a fully operational large-scale quantum computer with high error tolerance is required. Currently, NISQ devices can be engineered with approximately 100 qubits, but fault-tolerant computers would need millions of physical qubits at the very least to encode the logical information with sufficiently low error rates. A fault-tolerant implementation of quantum computational not only makes the quantum computer larger, but also the runtime longer by orders of magnitude. An extended runtime itself in turn means the computation is even more susceptible to errors.

Nov 13, 2020

Space solar power station a step closer thanks to government project

Posted by in categories: government, solar power, space, sustainability

Solar power stations in space that beam ‘emission-free electricity’ down to Earth could soon be a reality thanks to a UK government funded project.

Above the Earth there are no clouds and no day or night that could obstruct the sun’s ray – making a space solar station a constant zero carbon power source.

Continue reading “Space solar power station a step closer thanks to government project” »

Nov 13, 2020

New study outlines steps higher education should take to prepare a new quantum workforce

Posted by in categories: education, employment, information science, quantum physics

A new study outlines ways colleges and universities can update their curricula to prepare the workforce for a new wave of quantum technology jobs. Three researchers, including Rochester Institute of Technology Associate Professor Ben Zwickl, suggested steps that need to be taken in a new paper in Physical Review Physics Education Research after interviewing managers at more than 20 quantum technology companies across the U.S.

The study’s authors from University of Colorado Boulder and RIT set out to better understand the types of entry-level positions that exist in these companies and the educational pathways that might lead into those jobs. They found that while the companies still seek employees with traditional STEM degrees, they want the candidates to have a grasp of fundamental concepts in quantum information science and technology.

“For a lot of those roles, there’s this idea of being ‘quantum aware’ that’s highly desirable,” said Zwickl, a member of RIT’s Future Photon Initiative and Center for Advancing STEM Teaching, Learning and Evaluation. “The companies told us that many positions don’t need to have deep expertise, but students could really benefit from a one- or two-semester introductory sequence that teaches the foundational concepts, some of the hardware implementations, how the algorithms work, what a qubit is, and things like that. Then a graduate can bring in all the strength of a traditional STEM degree but can speak the language that the is talking about.”

Nov 13, 2020

Xzavier Herbert, a bright star in space math

Posted by in categories: mathematics, quantum physics, space

Sophomore math major Xzavier Herbert was never much into science fiction or the space program, but his skills in pure mathematics seem to keep drawing him into NASA’s orbit.

With an interest in representation theory, Herbert spent the summer virtually at NASA, studying connections between classical information theory and quantum information theory, each of which corresponds to a different set of laws: classical physics and quantum mechanics.

“What I’m doing involves how representation theory allows us to draw a direct analog from classical information theory to quantum information theory,” Herbert says. “It turns out that there is a mathematical way of justifying how these are related.”

Nov 13, 2020

The Most Hellish Planet Yet

Posted by in category: futurism

In a place where it rains rocks, we can exclude life for sure, right?