Toggle light / dark theme

15 years of radar measurements provide new information on planet’s spin, internal structure.

Venus is an enigma. It’s the planet next door and yet reveals little about itself. An opaque blanket of clouds smothers a harsh landscape pelted by acid rain and baked at temperatures that can liquify lead.

Now, new observations from the safety of Earth are lifting the veil on some of Venus’ most basic properties. By repeatedly bouncing radar off the planet’s surface over the last 15 years, a UCLA-led team has pinned down the precise length of a day on Venus, the tilt of its axis and the size of its core. The findings are published in the journal Nature Astronomy.

Do you like unusual clocks? We’re sure you’ll love this one!😍

This experiment is not included in the MEL Chemistry subscription and should be performed only by professionals–we just love showing you the beauty of chemistry💙 For cool and safe experiments to do at home, sign up for MEL Science here: https://mel.sc/s0X/

A rare glimpse of a star before it exploded in a fiery supernova looks nothing like astronomers expected, a new study suggests.

Images from the Hubble Space Telescope reveal that a relatively cool, puffy star ended its life in a hydrogen-free supernova. Until now, supernovas without hydrogen were thought to originate only from extremely hot, compact stars.

The discovery “is a very important test case for stellar evolution,” says Sung-Chul Yoon, an astrophysicist at Seoul National University in South Korea, who was not involved in the work. Theorists have some ideas about how massive stars behave right before they blow up, but such hefty stars are scant in the local universe and many are nowhere near ready to go supernova, Yoon says. Retroactively identifying the star responsible for a supernova provides an opportunity to test scenarios of how stars evolve right before exploding.

A Falcon 9 rocket and 60 more Starlink internet satellites set for launch early Sunday at Cape Canaveral will mark the first time SpaceX has flown a first stage 10 times, reaching a milestone that the company once said could be a limit for reusing boosters. Now SpaceX plans to keep flying reused rockets on Starlink missions until one fails.

The mission Sunday is set for liftoff at 2:42 a.m. EDT (0642 GMT) from pad 40 at Cape Canaveral Space Force Station, Florida. Nine kerosene-burning Merlin 1D engines will power the Falcon 9 rocket northeast from Florida’s Space Coast, following a trail blazed by 26 previous dedicated Starlink missions.

There is an 80 percent chance of good weather for launch at Cape Canaveral, according to the 45th Weather Squadron at Patrick Space Force Base. There is also a good chance of favorable upper level winds and acceptable conditions in the Falcon 9 booster’s downrange recovery area in the Atlantic Ocean.

A team of international researchers, including Dr. Rich Crane from the Camborne School of Mines, University of Exeter, have developed a new method to extract metals, such as copper, from their parent ore body.

The research team has provided a proof of concept for the application of an electric field to control the movement of an acid within a low permeability copper-bearing ore deposit to selectively dissolve and recover the metal in situ.

This is in contrast to the conventional approach for the mining of such deposits where the material must be physically excavated, which requires removal of both overburden and any impurities within the ore (known as gangue material).

7:01 they talk about Church’s comments of ending aging by 2030. Also this appears to be a part one.


In this video Professor Church talks about his theory of aging and touches on his ideas on the future of aging.

George Church is the Robert Winthrop Professor of Genetics at Harvard Medical School, a Professor of Health Sciences and Technology at Harvard and MIT. Professor Church helped initiate the Human Genome Project in 1984 and the Personal Genome Project in 2005. He is widely recognized for his innovative contributions to genomic science and his many pioneering contributions to chemistry and biomedicine. He has co-authored 580 paper, 143 patent publications & the book “Regenesis”.

Papers referenced in the video:

Bacteria Boost Mammalian Host NAD Metabolism by Engaging the Deamidated Biosynthesis Pathway:
https://pubmed.ncbi.nlm.nih.gov/32130883/

Comparison of the effects of nicotinic acid and nicotinamide degradation on plasma betaine and choline levels:
https://pubmed.ncbi.nlm.nih.gov/27567458/

Total plasma homocysteine and cardiovascular risk profile. The Hordaland Homocysteine Study: