Splitting water using suspensions of particulate carbon nitride-based photocatalysts may be a cheap way to produce hydrogen, but efficiencies have remained low. Now, Shen and colleagues use doped carbon nitride-based Z-scheme heterostructures to split water with a solar-to-hydrogen efficiency of 1.1% in the presence of metal-based co-catalysts.
Wireless Charging Keeps Drones Flying
Posted in drones
We do a fundraiser for the collection of support signatures for the admissions of the German Party for Health Research to the German federal election and to the state elections in Berlin and Thuringia. Those three elections take place on September 26th 2021.
Attention: According to the law, we are not allowed to receive more than 1000 Euro per year per donor from donors, who live outside the European Union.
Unlike in other countries, in Germany parties with 5 % of the votes or more get into parliament and can be part of the government (a government coalition). Also parties get funds from the state, if they receive at least 0.5 % of the votes in the federal election or at least 1 % of the votes in a state election.
A tidal turbine weighing 680 metric tons and dubbed “the world’s most powerful” has been launched from the Port of Dundee in Scotland, marking another significant step forward in the development of the U.K.’s marine energy sector.
In an announcement Thursday, Scottish firm Orbital Marine Power said its 2 megawatt (MW) turbine, the Orbital O2, would now be towed to the Orkney Islands, an archipelago north of mainland Scotland, for commissioning.
The plan is for the turbine to then be connected to the Orkney-based European Marine Energy Centre, where it will become operational.
#creativethink #spindle #motor.
I am show about making brushless spindle motor at 240v. the motor consist of three poles. the moto speed achieve 54000rpm.
————————————————————————————————————
EPFL scientists have developed AI-powered nanosensors that let researchers track various kinds of biological molecules without disturbing them.
The tiny world of biomolecules is rich in fascinating interactions between a plethora of different agents such as intricate nanomachines (proteins), shape-shifting vessels (lipid complexes), chains of vital information (DNA) and energy fuel (carbohydrates). Yet the ways in which biomolecules meet and interact to define the symphony of life is exceedingly complex.
Scientists at the Bionanophotonic Systems Laboratory in EPFL’s School of Engineering have now developed a new biosensor that can be used to observe all major biomolecule classes of the nanoworld without disturbing them. Their innovative technique uses nanotechnology, metasurfaces, infrared light and artificial intelligence. The team’s research has just been published in Advanced Materials.