Toggle light / dark theme

In 2001 at the Brookhaven National Laboratory in Upton, New York, a facility used for research in nuclear and high-energy physics, scientists experimenting with a subatomic particle called a muon encountered something unexpected.

To explain the fundamental physical forces at work in the universe and to predict the results of high-energy particle experiments like those conducted at Brookhaven, Fermilab in Illinois, and at CERN ’s Large Hadron Collider in Geneva, Switzerland, physicists rely on the decades-old theory called the Standard Model, which should explain the precise behavior of muons when they are fired through an intense magnetic field created in a superconducting magnetic storage ring. When the muon in the Brookhaven experiment reacted in a way that differed from their predictions, researchers realized they were on the brink of a discovery that could change science’s understanding of how the universe works.

Earlier this month, after a decades-long effort that involved building more powerful sensors and improving researchers’ capacity to process 120 terabytes of data (the equivalent of 16 million digital photographs every week), a team of scientists at Fermilab announced the first results of an experiment called Muon g-2 that suggests the Brookhaven find was no fluke and that science is on the brink of an unprecedented discovery.

Scientists at UC San Francisco are learning how immune cells naturally clear the body of defunct—or senescent—cells that contribute to aging and many chronic diseases. Understanding this process may open new ways of treating age-related chronic diseases with immunotherapy.

In a healthy state, these —known as invariant Natural Killer T (iNKT) cells—function as a surveillance system, eliminating cells the body senses as foreign, including , which have irreparable DNA damage. But the iNKT cells become less active with age and other factors like obesity that contribute to chronic disease.

Finding ways to stimulate this natural surveillance system offers an alternative to senolytic therapies, which to date have been the primary approach to removing senescent cells. It could be a boon to a field that has struggled with how to systemically administer these senolytics without .

Engineers at Duke University have developed the world’s first fully recyclable printed electronics. Their recycling process recovers nearly 100% of the materials used—and preserves most of their performance capabilities for reuse.

By demonstrating a crucial and relatively complex computer component—the transistor—created with three carbon-based inks, the researchers hope to inspire a new generation of recyclable electronics.

“Silicon-based computer components are probably never going away, and we don’t expect easily recyclable electronics like ours to replace the technology and devices that are already widely used,” said Aaron Franklin, the Addy Professor of Electrical and Computer Engineering at Duke. “But we hope that by creating new, fully recyclable, easily printed electronics and showing what they can do, that they might become widely used in future applications.”

Observational evidence of cosmic magnetic fields in a galaxy cluster.


If the authors’ interpretation is correct, it is a remarkable finding, because it implies that relatively strong, ordered magnetic fields (of a few tens of microgauss in strength) exist in the highly disrupted environments of galaxy clusters such as Abell 3376. For comparison, relatively weak magnetic fields (of a few microgauss) have been detected13 in the gas at the centres of clusters less disrupted than Abell 3376. So far, it has proved extremely challenging to detect and measure magnetic fields in clusters and in the space between galaxies, and the origin of cosmic magnetic fields is still mysterious. Consequently, any observational evidence for such fields in cluster environments is valuable.

However, there is another plausible explanation for the bent jets, referred to as the slingshot model. In this scenario, MRC 0600‑399 and the nearby radio galaxy are falling back towards the centre of Abell 3376 after being ejected from the centre at supersonic speed. The radio jets of MRC 0600‑399 are bent simply by the pressure of gaseous wind acting in the opposite direction to the galaxy’s motion. Although this alternative model can explain the bent jets, it cannot account for the peculiar double-scythe structures, which suggest that the jets are interacting with a layer of strong, ordered magnetic fields. One limitation of the current work is that the magnetic-field strength in the jet-interaction region was not measured directly but was obtained from numerical simulations.

The most exciting aspect of Chibueze and colleagues’ finding is that the observations of radio jets from SMBHs in galactic centres might help to explain poorly understood processes involving gas dynamics in galaxy-cluster formation. Sensitive measurements of the polarization of radio waves could confirm the strength and ordering of the magnetic fields in the magnetic boundary layer. Moreover, the discovery of other examples of strongly distorted radio jets might enable scientists to, for example, measure the total energy injected into jets by SMBHs, understand the role of magnetic fields in jet stabilization and determine the magnetic-field strength of the gas inside clusters. In the upcoming years, the most sensitive radio telescopes ever built will reveal many spectacular processes in the Universe that cannot be seen using optical instruments.

Voyager 1—one of two sibling NASA spacecraft launched 44 years ago and now the most distant human-made object in space—still works and zooms toward infinity.

The craft has long since zipped past the edge of the solar system through the heliopause—the solar system’s border with interstellar —into the interstellar medium. Now, its instruments have detected the constant drone of interstellar gas (), according to Cornell University-led research published in Nature Astronomy.

Examining data slowly sent back from more than 14 billion miles away, Stella Koch Ocker, a Cornell doctoral student in astronomy, has uncovered the emission. “It’s very faint and monotone, because it is in a narrow frequency bandwidth,” Ocker said. “We’re detecting the faint, persistent hum of interstellar gas.”

If you are a space enthusiast, there is some good news for you. In a new research, that could possibly open doors to many unknown aspects of the Universe, researchers have detected a resonant “hum” produced by the gravitational waves in the Universe. Experts say this can be imagined as a gravitational wave background of the Universe.

This hum of the Universe was reportedly detected by the North American Nanohetz Observatory for Gravitational Waves (NANOGrav), and the findings of the research was published in The Astrophysical Journal Letters.

In a report, ScienceAlert said this gravitational wave background can be imagined as “something like the ringing left behind by massive events throughout our Universe’s history”.