Toggle light / dark theme

Network defenders face the constant challenge of effectively preventing, detecting, and responding to cyber incidents.

Our new Scalable Warning and Resilience Model (SWARM) can help enable defenders to proactively protect their systems.


Today’s evolving cyber threats require a tailored and targeted approach to cybersecurity. Current defenses focus on managing threats after a network has been breached. RAND’s Scalable Warning and Resilience Model (SWARM) can help defenders proactively protect their systems through early warning of cyber incidents before they occur.

Israel’s Aquarius Engines this week gave the world a first look at the tiny hydrogen engine it hopes can supplant gas engine-generators and hydrogen fuel cells in future electrified vehicles. Weighing just 22 lb (10 kg), the simple engine uses a single moving piston to develop power. Beyond vehicles, Aquarius is developing the engine for use as an off-grid micro-generator.

First created in 2014, Aquarius’ efficient single-piston linear engine has a single central cylinder in which the piston moves between two engine heads. In previous iterations, Aquarius used more conventional fossil fuels to create combustion, but now it’s turning attention to emissions-slashing hydrogen. The company says Austrian engineering firm AVL-Schrick recently completed third-party testing, verifying that a modified version of the engine can operate purely on hydrogen.

“It was always our dream at Aquarius Engines to breathe oxygen into hydrogen technology as the fuel of the future,” explains Aquarius chairman Gal Fridman. “From initial tests, it appears that our hydrogen engine, that doesn’t require costly hydrogen fuel-cells, could be the affordable, green and sustainable answer to the challenges faced by global transport and remote energy production.”

A variety of molecules protrude from the cell surface, including glycoproteins, glycolipids, and the newly discovered glycoRNAs. This illustration depicts RNA as a double-stranded stem and a loop, and the glycan as a Tinkertoy-like structure branching off it. Credit: Emily M. Eng/R. Flynn et al./Cell 2021.

Sugars attach to certain RNA molecules on the outside membrane of the cell. The newly discovered “glycoRNAs” may be involved in immune signaling.

In a surprise find, scientists have discovered sugar-coated RNA molecules decorating the surface of cells.

French businesses are betting on insects as food. We explore the off-limit foods that might soon be on our plates.

Check out VICE News for more: http://vicenews.com.

Follow VICE News here:
Facebook: https://www.facebook.com/vicenews.
Twitter: https://twitter.com/vicenews.
Tumblr: http://vicenews.tumblr.com/
Instagram: http://instagram.com/vicenews.
More videos from the VICE network: https://www.fb.com/vicevideo.

#VICENews #News

See how we developed Hybrid rockets and launched them from high altitude balloon initially with the Huntsville Alabama L5 Society (HAL5)‘s High Altitude Lift-Off (HALO) Program and later with our High Altitude Research Corporation (HARC). See our Balloon Launch Return Vehicle (BLRV) and our HARC Cheap Access to Space (CATS) Prize rocket. Hear some of our war stories from these adventures. A balloon launched rocket is known as a rockoon.

Watch next week for a related interview, The Inside Scoop on Virgin Galactic with Tim Pickens.

You can support Galactic Gregs by supporting the sister channel Green Gregs by clicking the links below:
For your space habitat garden buy worms at greengregs.com!
See the Special Deals at My Patriot Supply (great space mission food): www.PrepWithGreg.com.
For gardening in your space habitat (or on Earth) Galactic Gregs has teamed up with True Leaf Market to bring you a great selection of seed for your planting. Check it out: http://www.pntrac.com/t/TUJGRklGSkJGTU1IS0hCRkpIRk1K

Home batteries are becoming increasingly popular ways to store solar energy to power houses at night, but what if one could make the whole house a battery? Rechargeable cement batteries prove the idea is possible, even if it has a long way to go to be affordable.

Dr Emma Zhang of Chalmers University of Technology, Sweden, mixed 0.9 percent carbon fibers into cement and poured it over a metal-coated carbon fiber mesh to make concrete blocks. In the journal Buildings, Zhang and colleagues report that with iron anodes and nickel cathodes these blocks become rechargeable batteries.

At 0.8 Watthours per liter, Zhang’s battery is hundreds of times less energy-dense than a lithium-ion battery, and completely useless for transportation purposes. However, it stores about ten times more energy than previous rechargeable concrete batteries. These, Zhang said in a statement; “Showed very low performance,” forcing her and colleagues to seek new ideas on how to produce the electrodes.

Aging, DNA Repair, And Clinical Innovation — Dr. Morten Scheibye-Knudsen — University of Copenhagen.


Dr. Morten Scheibye-Knudsen is an Associate Professor at the Department of Cellular and Molecular Medicine, and at the Center for Healthy Aging (CEHA), at the University of Copenhagen.

Dr. Scheibye-Knudsen did his MD at the University of Copenhagen and worked briefly as a physician in Denmark and Greenland before turning to science. He did his post-doctoral fellowship at Vilhelm Bohr’s lab at the National Institute on Aging, National Institutes of Health, USA, where he utilized state-of-the art approaches to understand how DNA damage contributes to aging, discovering that neurodegeneration in several premature aging diseases is partly caused by hyperactivation of a DNA damage responsive enzyme called polyADP-ribose polymerase 1 (PARP1). This activation leads to loss of vital metabolites such as Nicotinamide Adenine Dinucleotide (NAD+) and acetyl-CoA. Importantly, this discovery facilitated the realization that we can intervene in the aging process by inhibiting PARP1, augmenting NAD+ levels and increasing acetyl-CoA.

One of the more interesting areas of battery research centers on how these devices can not just store energy, but also double as structural components. We’ve seen some impressive examples of this that could be worked into electric vehicles, and now scientists in Sweden have applied this type of thinking to big buildings, demonstrating a novel type of cement-based battery that could see large structures constructed from functional concrete.

The research was carried out at Chalmers University of Technology, where scientists were working on developing more sustainable building materials, with a particular focus on concrete. As the world’s most widely-used material and one that is very energy intensive to produce, we’re seeing a lot of research into how the carbon footprint of concrete could be reduced, and the authors of this new study have come up with an interesting potential solution.

Like regular concrete, it starts with a cement-based mixture, but one spiked with small amounts of short carbon fibers to add conductivity and flexural strength. Also incorporated into the mix are a pair of carbon fiber meshes, one coated in iron to act as the battery’s anode and the other coated in nickel to act as the cathode. As the battery’s two electrodes, these ferry electrons back and forward as the device is charged and discharged.

Do we need to revisit this? 🤔


Airborne transmission by droplets and aerosols is important for the spread of viruses. Face masks are a well-established preventive measure, but their effectiveness for mitigating SARS-CoV-2 transmission is still under debate. We show that variations in mask efficacy can be explained by different regimes of virus abundance and related to population-average infection probability and reproduction number. For SARS-CoV-2, the viral load of infectious individuals can vary by orders of magnitude. We find that most environments and contacts are under conditions of low virus abundance (virus-limited) where surgical masks are effective at preventing virus spread. More advanced masks and other protective equipment are required in potentially virus-rich indoor environments including medical centers and hospitals. Masks are particularly effective in combination with other preventive measures like ventilation and distancing.

Airborne transmission is one of the main pathways for the transmission of respiratory viruses, including the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (1). Wearing face masks has been widely advocated to mitigate transmission. Masks are thought to protect people in two ways: source control reducing the emission and spread of respiratory viruses through airborne droplets and aerosols, and wearer protection reducing the inhalation of airborne respiratory viruses.

The effectiveness of masks, however, is still under debate. Compared to N95/FFP2 respirators which have very low particle penetration rates (around ~5%), surgical and similar masks exhibit higher and more variable penetration rates (around ~30–70%) (2, 3). Given the large number of particles emitted upon respiration and especially upon sneezing or coughing , the number of respiratory particles that may penetrate masks is substantial, which is one of the main reasons leading to doubts about their efficacy in preventing infections. Moreover, randomized clinical trials show inconsistent or inconclusive results, with some studies reporting only a marginal benefit or no effect of mask use (5, 6). Thus, surgical and similar masks are often considered to be ineffective. On the other hand, observational data show that regions or facilities with a higher percentage of the population wearing masks have better control of the coronavirus disease 2019 (COVID-19) (7–9).

Audacious French company Nawa showed off a concept bike in 2019, claiming its supercapacitor-hybrid battery pack could massively boost power and urban range for electric motorcycles. Now, it seems we’ll get a chance to see if the numbers stack up.

We’ve been following Nawa since 2018, when we first spoke to these guys about the potential benefits of using powerful ultracapacitors alongside energy-dense lithium batteries to extend the range and boost the peak power of electric vehicles.

The company wrapped the idea up into a futuristic-looking concept bike for CES 2020, and put some outrageous figures to its claims. Using a 9-kWh lithium battery, you would expect to get around 180 km (110 miles) of urban riding out of a full charge. The Nawa Racer proposed that adding a 0.1-kWh ultracapacitor to the system would boost that range up to around 300 km (180 miles), while unlocking some serious acceleration power to boot.