A group of Korean researchers have recently succeeded in developing new p-type semiconductor materials and thin-film transistors that will lead the innovation of the semiconductor industry. These new discoveries are expected to be widely utilized to improve the overall performance of next-gen displays and ultra-low power semiconductor devices.
South Korea’s Hogreen Air reveals the world’s first hydrogen-powered drone with a 5,800-mile remote range at the H2 MEET conference in Seoul.
A team of chemical biologists at the University of Washington, working with colleagues at Oxford Nanopore Technologies, has developed a protein sequencing process that involves pulling proteins through nanopores in a lipid membrane. Their paper is published in the journal Nature.
Earth will get a “second moon” this weekend, but it won’t be sticking around for long.
In recent years, the scientific community has made significant strides in the field of gene editing, particularly through the development of the CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) systems. In 2020, the Nobel Prize in Chemistry was awarded to the scientists for the discovery of CRISPR–Cas9 system, a revolutionary genome editing technology that advanced DNA therapeutics. Subsequently, the CRISPR–Cas13 system has emerged as a potential tool to identify and rectify errors in RNA sequences. CRISPR–Cas13 is a novel technology is specifically engineered for virus detection and RNA-targeted therapeutics. The CRISPR RNA (CrRNA) targets specific and non-specific RNA sequences, and Cas13 is an effector protein that undergoes conformational changes and cleaves the target RNA. This RNA-targeting system holds tremendous promise for therapeutics and presents a revolutionary tool in the landscape of molecular biology.
Now, in a recently published BioDesign Research study, a team of researchers led by Professor Yuan Yao from ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, China has elucidated the latest research trends of CRISPR–Cas13 in RNA-targeted therapies. Talking about this paper, which was published online on 6 September 2024, in Volume 6 of the journal, Prof. Yao says, “By focusing on RNA-;the intermediary between DNA and proteins-;CRISPR-Cas13 allows scientists to temporarily manipulate gene expression without inducing permanent changes to the genome. This flexibility makes it a safer option in scenarios where genome stability is critical.”
RNA plays a central role in carrying genetic information from DNA to protein-synthesizing machinery, and also regulates gene expression and participates in numerous cellular processes. Defects in RNA splicing or mutations can lead to a wide variety of diseases, ranging from metabolic disorders to cancer. A point mutation occurs when a single nucleotide is erroneously inserted, deleted, or changed. CRISPR–Cas13 plays a role in identifying and correcting these mutations by employing REPAIR (RNA editing for programmable A-to-I replacement) and RESCUE (RNA editing for specific C-to-U exchange) mechanisms. Explaining the applications of Cas13-based gene editors, Prof. Yao adds, “The mxABE editor, for example, can be used to correct a nonsense mutation linked with Duchenne muscular dystrophy that can be corrected with mxABE. This approach has proved high editing efficiency, restoring dystrophin expression to levels more than 50% of those of the wild type.”
Hierarchical assemblies of ferroelectric nanodomains, so-called super-domains, can exhibit exotic morphologies that lead to distinct behaviours. Controlling these super-domains reliably is critical for realizing states with desired functional properties.
A biased atomic force microscopy tip can write complex in-plane polar topologies in a model ferroelectric Pb0.6Sr0.4TiO3 by means of a smart scan path design. Hence, on-demand generation, reading and erasing of tunable topologies is possible.
There’s a bar in Baltimore, Maryland, that very few people get to enter.
From alcoholism to Parkinson’s, scientists are studying the mechanisms behind the broad clinical potential of weight-loss drugs.
Partial reprogramming with the Yamanaka transcription factors is considered to be a potential anti-aging strategy, but until now largely regarded as systemic intervention.
Reprogramming aged cells through targeted overexpression of Oct4, Sox2, and Klf4 leads to beneficial health effects in progeroid and aged mice.
A decade after the discovery of the “amplituhedron,” physicists have excavated more of the timeless geometry underlying the standard picture of how particles move.
Dataland co-founder Refik Anadol, 38, is a media artist whose “crowd-pleasing – and controversial” works using artificial intelligence have been displayed around the world, including at the Museum of Modern Art in New York, the Serpentine and, most recently, the United Nations headquarters.
In the past two years, Anadol has found himself at the center of debates over the value of AI-generated art, as crowds have been reportedly “transfixed” by his massive interactive digital canvases, while some art critics have panned them as over-hyped and mediocre.
Now Anadol is looking to build artists like himself a permanent exhibition space among some of LA’s most prominent high-culture venues, and he is pledging that the AI art museum will promote “ethical AI” and use renewable energy sources.