Toggle light / dark theme

In North Africa, some of the driest places on Earth have seen five times their average September rainfall. Flooding has affected more than 4 million people in 14 countries, according to the U.N. World Food Program. Heavy rain and floods have killed or displaced thousands and disrupted farming activities in areas where there already isn’t enough food for the population.

A northward shift in the region of clouds and rain that circles Earth near the equator is responsible for the flooding and greening. In this area, called the Intertropical Convergence Zone (ITCZ), Southern Hemisphere winds blowing from the southeast converge with Northern Hemisphere winds blowing from the northeast. The combination of converging winds, strong sun and warm ocean water leads to rising, moist air and constant clouds, showers and thunderstorms.

The movement of the ITCZ north and south of the equator during the year is primarily driven by the difference in temperature between the Northern and Southern hemispheres. It drifts toward the warmer hemisphere, which means it resides north of the equator during the Northern Hemisphere summer, usually reaching its northernmost point in August or September.

Four years after being functionally cured of sickle cell disease with a CRISPR gene-editing therapy, Jimi Olaghere has set a new world record for patients with this chronic and deadly disease.

Olaghere, a 39-year-old business owner from Atlanta, became the world’s first patient with sickle cell disease to reach the summit of Kilimanjaro at 7:30 am Tanzania time on Sept. 16. It’s the highest peak in Africa at 19,341 feet above sea level.

52 billion solar panels could soon be covering the American highway network. Researchers from the Chinese Academy of Sciences, Tsinghua University, Chinese Academy of Geosciences, and Columbia University have proposed a historic initiative which could see major global highways covered with solar panels.

The researchers publication “Roofing Highways With Solar Panels Substantially Reduces Carbon Emissions and Traffic Losses” in Earth’s Future advocate for the deployment of solar technology across the global highway network which spans up to 3.2 million kilometers.

In doing so, the researchers estimate that up to 17,578 TWh of electricity could be generated annually. This figure is equivalent to more than a staggering 60% of 2023’s energy consumption. This could offset up to 28% of global carbon emissions and reduce road accident incidences up to 11%.

Large language models (LLMs) such as ChatGPT and Google Gemini excel at being trained on large data-sets to generate informative responses to prompts. Yi Cao, an assistant professor of accounting at the Donald G. Costello College of Business at George Mason University, and Long Chen, associate professor and area chair of accounting at Costello, are actively exploring how individual investors can use LLMs to glean market insights from the dizzying array of available data about companies.

Their new working paper, appearing in SSRN Electronic Journal and co-authored with Jennifer Wu Tucker of the University of Florida and Chi Wan of University of Massachusetts Boston, examines AI’s ability to identify “peer firms,” or product market competitors in an industry.

Cao explains the significance of selecting peers by relating this process to the real-estate market. “The capital market is similar to the real-estate market in that a firm’s value is partially determined by the value of its peers. In the real-estate market, we price a home based on the value of comparable properties in the neighborhood, or the so-called ‘comps.’ In our paper, we aim to leverage the power of LLMs to identify comps for evaluating firm value.”

Summery:

(


Mousavi, S., Seyedmirzaei, H., Shahrokhi Nejad, S. et al. Sci Rep 14, 21,936 (2024). https://doi.org/10.1038/s41598-024-73277-z.

Download citation.

Neurotech company Synchron has been making massive strides over the past couple of years. It’s just announced that a trial participant has used its brain-computer interface (BCI) to turn on the lights in his home, see who is at the door, and choose what to watch on the TV – hands-free and without even a voice command.

That’s thanks to Synchron’s interface translating his thoughts into commands relayed to Amazon’s Alexa service. The virtual assistant is set up on his tablet and connected to his smart home devices. The trial participant, who is living with amyotrophic lateral sclerosis (ALS) and can’t use his hands, can simply think about navigating through options displayed on the tablet to engage them.

Lunar igneous activities including intrusive and extrusive magmatism, and their products contain significant information about the lunar interior and its thermal state. Their distribution is asymmetrical on the nearside and farside, reflecting the global lunar dichotomy. In addition to previously returned lunar samples all from nearside (Apollo, Luna, and Chang’e-5), samples from the South Pole-Aitken (SPA) basin on the farside have long been thought to hold the key to rebalancing the asymmetrical understandings of the Moon and disclosing the lunar dichotomy conundrum.

Earlier this year, the Chang’e-6 mission of the Chinese Lunar Exploration Program, successfully launched on May 3, landed on the lunar surface on June 2, and returned to the Earth on June 25 carrying a total of 1935.3g of lunar soils. It is the world’s first lunar farside sample-return mission, which landed in the south of the Apollo basin within the SPA basin on the farside. These precious samples would open a window to solve the long-standing question of lunar dichotomy, even reshape human’s knowledge of our closest neighbour. However, compared with the well-known mare volcanism surrounding the Chang’e-6 landing site, the intrusive magmatic activities have a much more obscure presence and origin, impeding future sample analyses when they are available for application.

In a recent research paper published in The Astrophysical Journal Letters, Dr Yuqi QIAN, Professor Joseph MICHALSKI and Professor Guochun ZHAO from the Department of Earth Sciences at The University of Hong Kong (HKU) and their domestic and international collaborators have comprehensively studied the intrusive magmatism of the Chang’e-6 landing site and its surroundings based on remote sensing data. The study revealed their extensive distributions and obscure nature with significant implications for the petrogenesis of lunar plutonic rocks and the Chang’e-6 mission, which will facilitate scientists’ further study of lunar farside.