Toggle light / dark theme

In 2016, researchers at the Salk Institute showed that activating certain genes associated with embryonic development could “reprogram” the age of cells and boost the age of mice. Last year, they even managed to use the process to restore vision in old mice.

But the natural “reprogramming” described in the new Harvard study is unlikely to be exactly the same and may be far more comprehensive as it resets cellular age to ground zero, rather than simply reversing it by a few years.

Now that they know when this process happens, the researchers hope they can discover what the actual mechanism is, how similar it is to artificial cellular programming, and whether it can be induced in normal adult cells to rejuvenate them. That’s likely to be a long road, but could eventually lead to major breakthroughs in longevity science.

Part of the problem mirrors the rise of automation in any other industry — performers told Input that they’re nervous that game studios might try to replace them with sophisticated algorithms in order to save a few bucks. But the game modder’s decision also raises questions about the agency that performers have over their own voices, as well as the artistry involved in bringing characters to life.

“If this is true, this is just heartbreaking,” video game voice actor Jay Britton tweeted about the mod. “Yes, AI might be able to replace things but should it? We literally get to decide. Replacing actors with AI is not only a legal minefield but an utterly soulless choice.”

“Why not remove all human creativity from games and use AI…” he added.

Material scientists have developed a fast method for producing epsilon iron oxide and demonstrated its promise for next-generation communications devices. Its outstanding magnetic properties make it one of the most coveted materials, such as for the upcoming 6G generation of communication devices and for durable magnetic recording. The work was published in the Journal of Materials Chemistry C, a journal of the Royal Society of Chemistry.

Iron (III) is one of the most widespread oxides on Earth. It is mostly found as the mineral hematite (or alpha , α-Fe2O3). Another stable and common modification is maghemite (or gamma modification, γ-Fe2O3). The former is widely used in industry as a red pigment, and the latter as a magnetic recording medium. The two modifications differ not only in crystalline structure (alpha-iron oxide has hexagonal syngony and gamma-iron oxide has cubic syngony) but also in magnetic properties.

In addition to these forms of iron oxide (III), there are more exotic modifications such as epsilon-, beta-, zeta-, and even glassy. The most attractive phase is epsilon iron oxide, ε-Fe2O3. This modification has an extremely high coercive force (the ability of the material to resist an external magnetic field). The strength reaches 20 kOe at room temperature, which is comparable to the parameters of magnets based on expensive rare-earth elements. Furthermore, the material absorbs in the sub-terahertz frequency range (100−300 GHz) through the effect of natural ferromagnetic resonance. The frequency of such resonance is one of the criteria for the use of materials in wireless communications devices—the 4G standard uses megahertz and 5G uses tens of gigahertz. There are plans to use the sub-terahertz range as a working range in the sixth generation (6G) , which is being prepared for active introduction in our lives from the early 2030s.

Scientists develop the first CRISPR-Cas9-based gene drive in plants which may breed crops better able to withstand drought and disease.


Scientists have discovered a unique form of cell messaging occurring in the human brain that’s not been seen before. Excitingly, the discovery hints that our brains might be even more powerful units of computation than we realized.

Early last year, researchers from institutes in Germany and Greece reported a mechanism in the brain’s outer cortical cells that produces a novel ‘graded’ signal all on its own, one that could provide individual neurons with another way to carry out their logical functions.

By measuring the electrical activity in sections of tissue removed during surgery on epileptic patients and analysing their structure using fluorescent microscopy, the neurologists found individual cells in the cortex used not just the usual sodium ions to ‘fire’, but calcium as well.

Sanofi will apply Google’s artificial intelligence (AI) and cloud computing capabilities toward developing new drugs, through a collaboration whose value was not disclosed.

The companies said they have agreed to create a virtual Innovation Lab to “radically” transform how future medicines and health services are developed and delivered.

Sanofi has articulated three goals for the collaboration with Google: better understand patients and diseases, increase Sanofi’s operational efficiency, and improve the experience of Sanofi patients and customers.

For the first time, CRISPR-Cas9-based gene drive technology has been developed in plants. Enabling the inheritance of both copies of a target gene from a single parent could greatly reduce the generations needed for plant breeding. Establishing this genome editing technology in plants may allow for breeding resilient crops that are better able to withstand drought and disease.

#GenomeEditing #AgBio #CRISPR #Cas9


Gene drives have been established in insects, including fruit flies and mosquitoes, and mammals such as mice. Now, for the first time, the CRISPR-Cas9-based technology that disrupts Mendelian inheritance and allows for selective acquisition of target genes has been developed in plants. Establishing this genome editing technology in plants may allow for breeding resilient crops that are better able to withstand drought and disease.

The research is published in Nature Communications in the paper, “Selective inheritance of target genes from only one parent of sexually reproduced F1 progeny in Arabidopsis.”