Menu

Blog

Page 6542

May 25, 2021

What 6 animals on the ISS can tell us about life in space

Posted by in category: space

We don’t know about how life away from Earth affects living things.


Astronauts have been sending animals to space longer than they’ve been going themselves, and the results have helped humans in space and on Earth.

May 25, 2021

Canada has waited long enough to ban chlorpyrifos

Posted by in category: futurism

In 2019, the European Union banned chlorpyrifos, allowing three more months of use. Canada’s three-year phaseout risks ongoing harms, as well as dumping of this product on our market.

Back in 2000, Canadian politicians spoke up against commonly used lawn and household chlorpyrifos products when the U.S. banned domestic uses. Despite a year of study, the PMRA had not taken action.

How long will chlorpyrifos persist in commerce?

May 25, 2021

Henrietta Lacks’ ‘Immortal’ Cells

Posted by in categories: biotech/medical, life extension

Circa 2010


Medical researchers use laboratory-grown human cells to learn the intricacies of how cells work and test theories about the causes and treatment of diseases. The cell lines they need are “immortal”—they can grow indefinitely, be frozen for decades, divided into different batches and shared among scientists. In 1951, a scientist at Johns Hopkins Hospital in Baltimore, Maryland, created the first immortal human cell line with a tissue sample taken from a young black woman with cervical cancer. Those cells, called HeLa cells, quickly became invaluable to medical research—though their donor remained a mystery for decades. In her new book, The Immortal Life of Henrietta Lacks, journalist Rebecca Skloot tracks down the story of the source of the amazing HeLa cells, Henrietta Lacks, and documents the cell line’s impact on both modern medicine and the Lacks family.

May 25, 2021

HeLa: HeLa cells are said to able to divide an unlimited number of times leading to cellular immortality

Posted by in categories: biotech/medical, life extension

HeLa (/ ˈ h iː l ɑː / ; also Hela or hela) is an immortal cell line used in scientific research. It is the oldest and most commonly used human cell line.[1] The line is named after and derived from cervical cancer cells taken on February 8, 1951,[2] from Henrietta Lacks, a 31-year-old African-American mother of five, who died of cancer on October 4, 1951.[3] The cell line was found to be remarkably durable and prolific, which allows it to be used extensively in scientific study.[4][5]

Scanning electron micrograph of an apoptotic HeLa cell. Zeiss Merlin HR-SEM.

May 25, 2021

How do cancer cells achieve immortality?

Posted by in categories: biotech/medical, life extension

The gentic code found in cancer cells could actually be used in crispr to end aging.


Cancer cell immortality leads to massive tumors, metastatic spread, and potentially re-emergence. Researchers are working to determine how cancer cells achieve immortality.

May 25, 2021

Fireflies.ai puts $14M into its AI videoconferencing assistant

Posted by in category: robotics/AI

Fireflies.ai, an AI-powered videoconference note-taking tool, has raised $14 million in a series A funding round.

May 25, 2021

Associations between aging and the loss of the ability to recover from stress

Posted by in categories: biotech/medical, life extension

Some might like.


The research team of Gero, a Singapore-based biotech company in collaboration with Roswell Park Comprehensive Cancer Center in Buffalo NY, has presented a study in Nature Communications on associations between aging and the loss of the ability to recover from stresses.

Recently, scientists have reported the first promising examples of reversal by experimental interventions. Indeed, many biological clock types properly predict more years of life for those who choose or quit unhealthy ones, such as smoking. Still unknown is how quickly biological age is changing over time for the same individual, and distinguishing between the transient fluctuations and the genuine bioage change trend.

Continue reading “Associations between aging and the loss of the ability to recover from stress” »

May 25, 2021

Intermittent fasting in mice effective at promoting long term memory retention

Posted by in categories: food, life extension, neuroscience

Might interest some.


A new study from the Institute of Psychiatry, Psychology and Neuroscience (IoPPN) at King’s College London has established that Intermittent Fasting (IF) is an effective means of improving long term memory retention and generating new adult hippocampal neurons in mice, in what the researchers hope has the potential to slow the advance of cognitive decline in older people.

The study, published today in Molecular Biology, found that a calorie restricted via every other day fasting was an effective means of promoting Klotho gene expression in mice. Klotho, which is often referred to as the “longevity gene” has now been shown in this study to play a central role in the production of hippocampal adult-born new neurons or neurogenesis.

Continue reading “Intermittent fasting in mice effective at promoting long term memory retention” »

May 25, 2021

Regenerative medicine: breaking the wall of scepticism

Posted by in categories: biotech/medical, education, internet, life extension, neuroscience

Is this the reason why the general public view the emerging field of regenerative medicine with such scepticism? Has a combined cultural history of being bombarded with empty promises of longevity made us numb to such a prospect? Possibly, although I believe it might go deeper than old fashioned scepticism. After all, our species is hardly a stranger to believing something if we desire for it to be true, regardless of how much evidence is presented to us.

Maybe we are simply experiencing just another example of humans finding dramatic change to our way of life hard to comprehend and accept. After all, practically every major change in our recent history was largely believed to be an impossibility by the general public, right up until the point that it became the norm. Everything from the aeroplane to the internet was seen as science fiction, but yet today they are integral parts of our lives. Now, this is not to say that everything the general public is sceptical of will inevitably turn out to prove them wrong, but lessons from our history do show that when it comes to scientific progress, the public will not believe it until they can see it.

Some would believe that scepticism towards regenerative medicine strikes at something much deeper in our psych, as it threatened to fundamentally change our entire outlook on the world. For our entire lives, we have been taught by our interactions with others exactly how life is supposed to progress. You are supposed to suffer a gradual decay of mental and physical abilities, until eventually you die. That is just how it is, and if that were to ever change then we would all have to change how we think about the world. The concept of a 125 year old with the appearance of a 25 year old seems bizarre to us right now, and to many the idea of ever lasting health just goes against their fundamental beliefs of how the world functions to such an extent that they cannot comprehend anything different. Some would even go far as to defend the ageing process as being an integral part of life, displaying what can only be described as ‘Stockholm syndrome with extra steps’.

May 25, 2021

Estimating infectiousness throughout SARS-CoV-2 infection course

Posted by in category: biotech/medical

Of 25000+ people who tested positive for #COVID19 in Germany, 8% had very high viral loads; about a third of these had little to no symptoms. The results suggest asymptomatic people can be expected to be as infectious as hospitalized patients.

Read more from Science:


Two elementary parameters for quantifying viral infection and shedding are viral load and whether samples yield a replicating virus isolate in cell culture. We examined 25381 German SARS-CoV-2 cases, including 6110 from test centres attended by pre-symptomatic, asymptomatic, and mildly-symptomatic (PAMS) subjects, 9519 who were hospitalised, and 1533 B.1.1.7 lineage infections. The youngest had mean log10 viral load 0.5 (or less) lower than older subjects and an estimated ~78% of the peak cell culture replication probability, due in part to smaller swab sizes and unlikely to be clinically relevant. Viral loads above 109 copies per swab were found in 8% of subjects, one-third of whom were PAMS, with mean age 37.6. We estimate 4.3 days from onset of shedding to peak viral load (8.1) and cell culture isolation probability (0.75). B.1.1.7 subjects had mean log10 viral load 1.05 higher than non-B.1.1.7, with estimated cell culture replication probability 2.6 times higher.

Continue reading “Estimating infectiousness throughout SARS-CoV-2 infection course” »