Menu

Blog

Page 6537

May 26, 2021

The number of neurons in Drosophila and mosquito brains

Posted by in categories: chemistry, neuroscience

Various insect species serve as valuable model systems for investigating the cellular and molecular mechanisms by which a brain controls sophisticated behaviors. In particular, the nervous system of Drosophila melanogaster has been extensively studied, yet experiments aimed at determining the number of neurons in the Drosophila brain are surprisingly lacking. Using isotropic fractionator coupled with immunohistochemistry, we counted the total number of neuronal and non-neuronal cells in the whole brain, central brain, and optic lobe of Drosophila melanogaster. For comparison, we also counted neuronal populations in three divergent mosquito species: Aedes aegypti, Anopheles coluzzii and Culex quinquefasciatus. The average number of neurons in a whole adult brain was determined to be 199380 ±3400 cells in D. melanogaster, 217910 ±6180 cells in Ae. aegypti, 223020 ± 4650 cells in An. coluzzii and 225911±7220 cells in C. quinquefasciatus. The mean neuronal cell count in the central brain vs. optic lobes for D. melanogaster (101140 ±3650 vs. 107270 ± 2720), Ae. aegypti (109140 ± 3550 vs. 112000 ± 4280), An. coluzzii (105130 ± 3670 vs. 107140 ± 3090), and C. quinquefasciatus (108530 ±7990 vs. 110670 ± 3950) was also estimated. Each insect brain was comprised of 89% ± 2% neurons out of its total cell population. Isotropic fractionation analyses did not identify obvious sexual dimorphism in the neuronal and non-neuronal cell population of these insects. Our study provides experimental evidence for the total number of neurons in Drosophila and mosquito brains.

Citation: Raji JI, Potter CJ (2021) The number of neurons in Drosophila and mosquito brains. PLoS ONE 16: e0250381. https://doi.org/10.1371/journal.pone.

Editor: Matthieu Louis, University of California Santa Barbara, UNITED STATES.

May 26, 2021

High-performance brain-to-text communication via handwriting

Posted by in categories: computing, neuroscience

A brain–computer interface enables rapid communication through neural decoding of attempted handwriting movements in a person with paralysis.

May 26, 2021

New potential drug target may protect brain against low oxygen damage

Posted by in categories: biotech/medical, health, neuroscience

Some of the most devastating health effects of a stroke or heart attack are caused by oxygen deprivation in the brain. Now, researchers at Massachusetts General Hospital (MGH) have identified an enzyme that may naturally protect the brain from oxygen deprivation damage, which could be a potential drug target to prevent issues arising from strokes or heart attacks.

Like many scientific breakthroughs, the new discovery came about while investigating something else entirely. The team was looking into a study from 2005 that found that a state of “suspended animation” could be induced in mice by having them inhale hydrogen sulfide. In the new study, the researchers set out to investigate the longer-term effects of that exposure.

The team exposed groups of mice to hydrogen sulfide for four hours a day, for five consecutive days. The suspended animation-like state followed, with the animals’ movement slowing and body temperatures dropping.

May 26, 2021

A First Look at the World Partition System in UE5

Posted by in category: futurism

How does Unreal Engine 5 manage to stream such amounts of data? The answer is World Partition.

May 26, 2021

Resetting the biological clock

Posted by in categories: biotech/medical, chemistry, neuroscience

The biological clock is present in almost all cells of an organism. As more and more evidence emerges that clocks in certain organs could be out of sync, there is a need to investigate and reset these clocks locally. Scientists from the Netherlands and Japan introduced a light-controlled on/off switch to a kinase inhibitor, which affects clock function. This gives them control of the biological clock in cultured cells and explanted tissue. They published their results on 26 May in Nature Communications.

Life on Earth has evolved under a 24-hour cycle of light and dark, hot and cold. “As a result, our cells are synchronized to these 24-hour oscillations,” says Wiktor Szymanski, Professor of Radiological Chemistry at the University Medical Center Groningen. Our circadian clock is regulated by a central controller in the , a region in the brain directly above the optic nerve, but all our cells contain a clock of their own. These clocks consist of an oscillation in the production and breakdown of certain proteins.

May 26, 2021

USB-C is about to go from 100W to 240W, enough to power beefier laptops

Posted by in categories: computing, mobile phones

Soon, the majority of portable PCs won’t need to be equipped with an ugly barrel jack and a proprietary power brick to charge. The USB Implementers Forum (USB-IF) has just announced that it’s more than doubling the amount of power you can send over a USB-C cable to 240 watts, which means you’ll eventually be able to plug in the same kind of multipurpose USB-C cable you currently use on lightweight laptops, tablets, and phones to charge all but the beefiest gaming laptops.


Extended Power Range.

May 26, 2021

Flickering Lights and Sound Could Be New Weapon Against Alzheimer’s

Posted by in categories: biotech/medical, neuroscience

Summary: A “flicker treatment” that uses flickering lights and sounds has been shown to be tolerable, safe, and effective in treating adults with mild cognitive impairment.

Source: Georgia Tech.

For the past few years, Annabelle Singer and her collaborators have been using flickering lights and sound to treat mouse models of Alzheimer’s disease, and they’ve seen some dramatic results.

May 26, 2021

Tartu researchers are turning soil into batteries

Posted by in categories: computing, mobile phones, sustainability, transportation

Amazing: 3


The President of Estonia Kersti Kaljulaid at the Tartu University laboratory. Photo: Mattias Tammet / Office of the President of the Republic of Estonia.

As the world is running out of lithium, planet-friendlier batteries are waiting to hit the market. We are using up lithium, the essential metal in rechargeable batteries. Some experts estimate that there won’t be any lithium left by 2035, and some say that it may already disappear within four years. Who should lose sleep over this? Anyone with a smartphone, a laptop or an electric car. Without lithium, they would have to be plugged in at all times.

Continue reading “Tartu researchers are turning soil into batteries” »

May 26, 2021

Limit on lab-grown human embryos dropped

Posted by in category: biotech/medical

The international body representing stem-cell scientists has torn up a decades-old limit on the length of time that scientists should grow human embryos in the lab, giving more leeway to researchers who are studying human development and disease.

Previously, the International Society for Stem Cell Research (ISSCR) recommended that scientists culture human embryos for no more than two weeks after fertilization. But on 26 May, the society said it was relaxing this famous limit, known as the ‘14-day rule’. Rather than replace or extend the limit, the ISSCR now suggests that studies proposing to grow human embryos beyond the two-week mark be considered on a case-by-case basis, and be subjected to several phases of review to determine at what point the experiments must be stopped.

The ISSCR made this change and others to its guidelines for biomedical research in response to rapid advances in the field, including the ability to create embryo-like structures from human stem cells. In addition to relaxing the ‘14-day rule’, for instance, the group advises against editing genes in human embryos until the safety of genome editing is better established.

May 26, 2021

How the Brain Strengthens Memories During Sleep

Posted by in categories: materials, neuroscience

Summary: The reactivation of learned material during slow oscillation/sleep spindle complexes, and the precision of SO-spindle coupling predicts how strong a memory will be reactivated in the brain.

Source: University of Birmingham.

While we sleep, the brain produces particular activation patterns. When two of these patterns – slow oscillations and sleep spindles – gear into each other, previous experiences are reactivated. The stronger the reactivation, the clearer will be our recall of past events, a new study reveals.