Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

How pediatric brain tumors grow: Blocking a chemical messenger could offer new route to treatment

The most common type of brain tumor in children, pilocytic astrocytoma (PA), accounts for about 15% of all pediatric brain tumors. Although this type of tumor is usually not life-threatening, the unchecked growth of tumor cells can disrupt normal brain development and function.

Current treatments focus mainly on removing the tumor cells, but recent studies have shown that non-cancerous cells, such as , also play a role in brain tumor formation and growth, suggesting novel approaches to treating these cancers.

Scientists have long known that a nerve cell signaling chemical called can increase the growth of cancers throughout the body, but despite years of investigation, they haven’t figured out exactly how this happens, or how to stop it.

Circle versus rectangle: Finding ‘Earth 2.0’ may be easier using a new telescope shape

The Earth supports the only known life in the universe, all of it depending heavily on the presence of liquid water to facilitate chemical reactions. While single-celled life has existed almost as long as Earth itself, it took roughly three billion years for multicellular life to form. Human life has existed for less than one-10 thousandth of the age of Earth.

All of this suggests that life might be common on planets that support liquid water, but it might be uncommon to find life that studies the universe and seeks to travel through space. To find extraterrestrial life, it might be necessary for us to travel to it.

However, the vastness of space, coupled with the impossibility of traveling or communicating faster than the , places practical limits on how far we can roam.

Elon Musk’s Secret ‘Starfall’ Programme for SpaceX Starship

SpaceX’s rumored “Starfall” program, related to its Starship initiative, aims to revolutionize in-space manufacturing, enabling advancements in various fields and reducing cargo transportation costs to unlock economic potential in space ## ## Questions to inspire discussion.

In-Orbit Manufacturing Potential.

🚀 Q: What unique advantages does in-orbit manufacturing offer? A: In-orbit manufacturing provides no gravity, perfect fluid flow, stable heat flow, and no air moving heat around, enabling growth of structures without scaffolding and benefiting industries like pharmaceuticals, advanced materials, and military logistics.

🏭 Q: Which industries could be disrupted by in-orbit manufacturing in the 2040s? A: In-orbit manufacturing could disrupt terrestrial industries in the 2040s, particularly pharmaceuticals, advanced materials, and military logistics, allowing production of high-value goods like protein crystals, retinal organoids, ZBLAN fiber, and semiconductor ingots in space.

Starfall Program.

🛰️ Q: What is SpaceX’s Starfall program? A: Starfall is a secret SpaceX program using small return pods from Starship to bring high-value goods back from orbit, potentially slashing the $40,000/kg cost of returning materials to Earth.

Starship IFT-10 & Starlink

SpaceX’s successful Starship IFT-10 test and advancements in Starlink technology are poised to significantly reduce launch costs and disrupt the broadband landscape, paving the way for a more efficient and cost-effective space travel and satellite internet service.

## Questions to inspire discussion.

Starship and Starlink Advancements.

🚀 Q: How does Starship improve Starlink satellite deployment? A: Starship enables deployment of V3 Starlink satellites that are 40-50X cheaper per unit bandwidth compared to Falcon 9, according to Mach33 research.

📡 Q: What advantages do larger satellites on Starship offer? A: Starship’s size allows for larger satellites delivering more bandwidth per mass, improving physics scaling laws and making it 50X more efficient than Falcon 9 for launching bandwidth per kilogram.

Cost and Capacity Improvements.

Tesla’s Big Moves Just Changed EVERYTHING

Tesla is poised for massive growth in autonomy and investor opportunities driven by the expansion of its Full Self-Driving feature, robo-taxi fleet, and new model launches, signaling a significant shift in its business and valuation.

Questions to inspire discussion.

FSD and Robotaxi Rollout.
🚗 Q: What improvements are expected in Tesla’s FSD version 14? A: FSD v14 is anticipated to be 100-1000x better than v13, with 2 million miles between safety-critical disengagements, making it safer than human drivers.

A Review on the Roles of Photoacoustic Imaging for Conventional and Novel Clinical Diagnostic Applications

Photoacoustic imaging is a promising medical imaging modality that enables the visualization of molecular functional and morphological information of biological tissues. Its clinical potential has been widely investigated for assessing and diagnosing various diseases. Currently, several research groups are developing photoacoustic imaging systems for translation from the laboratory to the clinic. In particular, the integration of photoacoustic imaging into existing diagnostic ultrasound applications, such as cancer diagnosis, has shown promising results. Additionally, recent research has explored the application of photoacoustic imaging for novel clinical uses. In this review paper, recent trials of photoacoustic imaging in both conventional and novel clinical applications are summarized and evaluated.

Induced somatic mutation accumulation during skeletal muscle regeneration reduces muscle strength

With aging, somatic mutations accumulate in cellular DNA; however, whether they drive age-related functional decline is incompletely understood. Here the authors show that these mutations can weaken muscle repair and reduce strength after injury, suggesting they play a role in age-related physical decline in mouse muscle.

/* */