Toggle light / dark theme

Circa 2017


Recently, increasing attention has been devoted to mastering a new technique of optical delivery of micro-objects tractor-beam’1, 2, 3, 4, 5, 6, 7, 8, 9. Such beams have uniform intensity profiles along their propagation direction and can exert a negative force that, in contrast to the familiar pushing force associated with radiation pressure, pulls the scatterer toward the light source. It was experimentally observed that under certain circumstances, the pulling force can be significantly enhanced6 if a non-spherical scatterer, for example, a linear chain of optically bound objects10, 11, 12, is optically transported. Here we demonstrate that motion of two optically bound objects in a tractor beam strongly depends on theirs mutual distance and spatial orientation. Such configuration-dependent optical forces add extra flexibility to our ability to control matter with light.

Circa 2019


Decay is relentless in the macroscopic world: broken objects do not fit themselves back together again. However, other laws are valid in the quantum world: new research shows that so-called quasiparticles can decay and reorganize themselves again and are thus become virtually immortal. These are good prospects for the development of durable data memories.

Warren Buffett said Wednesday he will donate $4.1 billion worth of Berkshire Hathaway shares to five foundations, and that he will resign as the trustee at the Bill & Melinda Gates Foundation.

This year’s donation marked the halfway point for the 90-year-old Oracle of Omaha, who in 2006 pledged to give away all of his Berkshire shares through annual gifts to Bill & Melinda Gates Foundation, Susan Thompson Buffett Foundation, Sherwood Foundation, Howard G. Buffett Foundation and NoVo Foundation. Back then, Buffett owned 474998 Berkshire A shares. Today, he said he owns 238624 shares, worth about $100 billion.

“Today is a milestone for me,” Buffett said in a statement. “In 2006, I pledged to distribute all of my Berkshire Hathaway shares — more than 99% of my net worth — to philanthropy. With today’s $4.1 billion distribution, I’m halfway there.”

Imagine clothing that can warm or cool you, depending on how you’re feeling. Or artificial skin that responds to touch, temperature, and wicks away moisture automatically. Or cyborg hands controlled with DNA motors that can adjust based on signals from the outside world.

Welcome to the era of intelligent matter—an unconventional AI computing idea directly woven into the fabric of synthetic matter. Powered by brain-based computing, these materials can weave the skins of soft robots or form microswarms of drug-delivering nanobots, all while reserving power as they learn and adapt.

Sound like sci-fi? It gets weirder. The crux that’ll guide us towards intelligent matter, said Dr. W.H.P. Pernice at the University of Munster and colleagues, is a distributed “brain” across the material’s “body”— far more alien than the structure of our own minds.

Astronomers Pedro Bernardinelli and Gary Bernstein discovered a space object recently that has an orbit around the sun and also stretches into the Oort cloud—they have named it 2014 UN271. The researchers made the discovery while studying archival images collected for the Dark Energy Survey over the years 2014 to 2018. Since its discovery, entities such as the MMPL forum, the Minor Planet Center and JPL Solar System Dynamics have been tracking the object and have found that it will make its closest approach to Earth in 2031.

Measurements of the object put it between the size of a very small planet and a comet—it is believed to have a diameter of 100 to 370 km. If it turns out to be on the larger end of that spectrum, it would mark the largest Oort cloud object discovered to date. But it is the path of the object that has drawn the attention of astronomers—its orbit is nearly perpendicular to the plane created by the nine inner planets and takes it deep into the solar system and into the Oort cloud. One trip around the sun has been calculated to take 612190 years. It is currently moving deeper into the solar system, which means astronomers will have an opportunity to observe it 10 years from now.

Sam Deen, an amateur astronomer posting on the MMPL forum described the find as “radically exceptional.” Study of 2014 UN271 as it draws closer will allow researchers to analyze an that sometimes passes through the Oort cloud at distances as close as 10.9 AU from the sun—near the orbit of Saturn. As it draws nearer to the sun, it is likely to develop a comet-like tail as frozen material on its surface is vaporized. It is not clear just yet, however, how bright 2014 UN271 will appear in the night sky here on Earth—but it is likely that its brightness will fall somewhere between that of Pluto or its moon Charon; enough for amateurs and professionals alike to get a good view of it using strong telescopes.

A team of researchers from the Max Planck Institute of Molecular Plant Physiology, the University of Naples Federico II, the Weizmann Institute of Science and the Porter School of the Environment and Earth Sciences has found that making food from air would be far more efficient than growing crops. In their paper published in Proceedings of the National Academy of Sciences, the group describes their analysis and comparison of the efficiency of growing crops (soybeans) and using a food-from-air technique.

For several years, researchers around the world have been looking into the idea of growing “ from air,” combining a renewable fuel resource with carbon from the air to create food for a type of bacteria that create edible protein. One such project is Solar Foods in Finland, where researchers have the goal of building a demonstration plant by 2023. In this new effort, the researchers sought to compare the efficiency of growing a staple crop, soybeans, with growing food from air.

To make their comparisons, the researchers used a food-from-air system that uses solar energy panels to make electricity, which is combined with from the air to produce food for microbes grown in a bioreactor. The protein the microbes produce is then treated to remove and then dried to produce a powder suitable for consumption by humans and animals.