Toggle light / dark theme

Discovering and controlling exotic physical states is key in condensed matter physics and materials science. It has the potential to drive advancements in quantum computing and spintronics.

- Advertisement -

While studying a ferrimagnet model, scientists at the U.S. Department of Energy’s Brookhaven National Laboratory uncovered a new phase of matter called “half-ice, half-fire.” This state is a twin to the “half-fire, half-ice” phase discovered in 2016.

Could we reach Alpha Centauri in just 60 years? The Nuclear Salt Water Rocket (NSWR) might be the answer! With speeds of up to 7.6% of light speed, this game-changing propulsion system could make interstellar travel a reality within a single human lifetime. But how does it work? What challenges stand in the way? In this episode, we break down everything you need to know about NSWR and its potential to revolutionize space travel!
Watch now and explore the future of interstellar exploration!

Paper link : https://path-2.narod.ru/design/base_e… 00:00 Introduction 00:58 How the NSWR Works and Its Breakthrough Potential 03:41 Feasibility and Engineering Challenges 06:30 The Potential Impact on Space Exploration 09:35 Outro 09:44 Enjoy MUSIC TITLE : Starlight Harmonies MUSIC LINK : https://pixabay.com/music/pulses-star… Visit our website for up-to-the-minute updates: www.nasaspacenews.com Follow us Facebook: / nasaspacenews Twitter: / spacenewsnasa Join this channel to get access to these perks: / @nasaspacenewsagency #NSN #NASA #Astronomy#NuclearSaltWaterRocket #SpaceExploration #InterstellarTravel #AlphaCentauri #FutureOfSpaceTravel #SpaceTechnology #RocketScience #FastestRocket #NASA #RobertZubrin #DeepSpaceExploration #SpacePropulsion #NuclearRockets #Physics #Astrophysics #NewSpaceRace #SpaceEngineering #CosmicExploration #BeyondOurSolarSystem #WarpDrive #Science #SpaceScience #RocketTechnology #StarTravel #FusionPropulsion #MarsToStars #LightSpeedTravel #FuturisticTechnology #HighThrustPropulsion #SpaceFrontier #NextGenSpacecraft.

Chapters:
00:00 Introduction.
00:58 How the NSWR Works and Its Breakthrough Potential.
03:41 Feasibility and Engineering Challenges.
06:30 The Potential Impact on Space Exploration.
09:35 Outro.
09:44 Enjoy.

MUSIC TITLE : Starlight Harmonies.

MUSIC LINK : https://pixabay.com/music/pulses-star

Visit our website for up-to-the-minute updates:

Satya Nadella, CEO of Microsoft, shares the groundbreaking potential of AI Copilot — a powerful tool that’s transforming how we work. From streamlining everyday tasks to revolutionizing healthcare workflows, AI Copilot is designed to seamlessly integrate with the tools we already use, like Teams, Word, and Excel.

Satya Nadella explains how AI Copilot is helping doctors prepare for high-stakes meetings, automatically generating agendas, summaries, and even PowerPoint presentations. Plus, see how it empowers professionals to gather the latest insights, collaborate with teams, and create smarter workflows with ease.

Thank You for watching! Do not forget to Like | Comment | Share.

About the channel.

Watch us for the best news and views on business, stock markets, crypto currencies, consumer technology, the world of real estate, bullion, automobiles, start-ups and unicorns and personal finance. Business Today TV will also bring you all you need to know about mutual funds, insurance, loans and pension plans among others.

Follow us at:

A key objective of ongoing research rooted in molecular physics is to understand and precisely control chemical reactions at very low temperatures. At low temperatures, the chemical reactions between charged particles (i.e., ions) and molecules unfold with highly rotational-state-specific rate coefficients, meaning that the speed at which they proceed strongly depends on the rotational states of the involved molecules.

Researchers at ETH Zürich have recently introduced a new approach to control chemical reactions between ions and molecules at low temperatures, employing microwaves (i.e., with frequencies ranging from 300 MHz to 300 GHz). Their proposed scheme, outlined in a paper published in Physical Review Letters, entails the use of pulses to manipulate molecular rotational-state populations.

“Over the past 10 years, we have developed a method with which ion-molecule reactions can be studied at very low temperatures, below 10 K, corresponding to the conditions in in the , where these types of reactions play a key role,” Valentina Zhelyazkova, corresponding author of the paper, told Phys.org.

Brigham and Women’s Hospital-led research reports no significant long-term benefit of cocoa flavanol supplementation in preventing age-related macular degeneration (AMD). The paper is published in the journal JAMA Ophthalmology.

AMD is a progressive retinal disease and the most common cause of severe vision loss in adults over age 50. AMD damages the macula, the central part of the retina responsible for sharp, detailed vision. While peripheral sight is typically preserved, central vision loss can impair reading, driving, facial recognition, and other quality of life tasks. Abnormalities of blood flow in the eye are associated with the occurrence of AMD.

Cocoa flavanols are a group of naturally occurring plant compounds classified as flavonoids, found primarily in the cocoa bean. These bioactive compounds have been studied for their vascular effects, including improved endothelial function and enhanced nitric oxide production, which contribute to vasodilation and circulatory health. Previous trials have shown that moderate intake of may , improve lipid profiles, and reduce markers of inflammation, suggesting a role in mitigating cardiovascular and related vascular conditions.

We’re exploring the frontiers of AGI, prioritizing readiness, proactive risk assessment, and collaboration with the wider AI community.

Artificial general intelligence (AGI), AI that’s at least as capable as humans at most cognitive tasks, could be here within the coming years.

Integrated with agentic capabilities, AGI could supercharge AI to understand, reason, plan, and execute actions autonomously. Such technological advancement will provide society with invaluable tools to address critical global challenges, including drug discovery, economic growth and climate change.

A recently discovered inflammatory disease known as VEXAS syndrome is more common, variable, and dangerous than previously understood, according to results of a retrospective observational study of a large health care system database. The findings, published in JAMA, found that it struck 1 in 4,269 men over the age of 50 in a largely White population and caused a wide variety of symptoms.

“The disease is quite severe,” study lead author David Beck, MD, PhD, of the department of medicine at NYU Langone Health, said in an interview. Patients with the condition “have a variety of clinical symptoms affecting different parts of the body and are being managed by different medical specialties.”

Dr. Beck and colleagues first described VEXAS (vacuoles, E1-ubiquitin-activating enzyme, X-linked, autoinflammatory, somatic) syndrome in 2020. They linked it to mutations in the UBA1 (ubiquitin-like modifier activating enzyme 1) gene. The enzyme initiates a process that identifies misfolded proteins as targets for degradation.

Did you know that the camera sensor in your smartphone could help unlock the secrets of antimatter? The AEgIS collaboration, led by Professor Christoph Hugenschmidt’s team from the research neutron source FRM II at the Technical University of Munich (TUM), has developed a detector using modified mobile camera sensors to image, in real time, the points where antimatter annihilates with matter.

This new device, described in a paper published in Science Advances, can pinpoint antiproton annihilations with a resolution of about 0.6 micrometers, a 35-fold improvement over previous real-time methods.

AEgIS and other experiments at CERN’s Antimatter Factory, such as ALPHA and GBAR, are on a mission to measure the free-fall of antihydrogen within Earth’s gravitational field with high precision, each using a different technique. AEgIS’s approach involves producing a horizontal beam of antihydrogen and measuring its vertical displacement using a device called a moiré deflectometer that reveals tiny deviations in motion and a detector that records the antihydrogen annihilation points.