Toggle light / dark theme

The size of a tennis ball. The mass of the Earth.


But that could change soon.

Current gravitational wave observatories are sensitive to the mergers of stellar-mass black holes. We’ve observed a few mergers involving neutron stars, but most have been between black holes on the order of tens of solar masses.

We can’t yet observe the gravitational waves of supermassive black holes in other galaxies, nor can we observe those of planet-sized worlds. Proposed detectors such as eLISA will allow us to observe the former, but it will take a novel new idea to detect the latter.

A new laser that generates quantum particles can recycle lost energy for highly efficient, low threshold laser applications.

Scientists at KAIST have fabricated a laser system that generates highly interactive quantum particles at room temperature. Their findings, published in the journal Nature Photonics, could lead to a single microcavity laser system that requires lower threshold energy as its energy loss increases.

The system, developed by KAIST physicist Yong-Hoon Cho and colleagues, involves shining light through a single hexagonal-shaped microcavity treated with a loss-modulated silicon nitride substrate. The system design leads to the generation of a polariton laser at room temperature, which is exciting because this usually requires cryogenic temperatures.

According to NASA, the solar storm is travelling towards Earth at a velocity of 1.6 million km/hr and the speed might even increase more.

The satellites in the Earth’s upper atmosphere are also expected to get impacted by the incoming flares. This will directly impact GPS navigation, mobile phone signal and satellite TV. The power grids can also be impacted due to the solar flares.

On the positive side, the solar flares will create an amplified view of Aurora lights in North or South Pole. The people living near the poles will get to experience these lights.

A new pizzeria, called Pazzi, is staffed entirely by robots, which can handle everything from order-taking to prepping the dough, to boxing the finished meal.

The restaurant, found in the Beaubourg area of Paris, has taken eight years of research and development. Its creators are two inventors, Cyril Hamon and Sébastien Roverso – both passionate about robotics and electronics since childhood – who began designing the machines in a family garage. Their goal has been to reinvent the fast food experience with a fully automated system that is more convenient and empowering to customers, while maintaining the same or better quality food as conventional restaurants and also being environmentally sustainable.

Pazzi builds on the success of a pilot, tested at the Val d’Europe shopping centre in 2019. The 120m² establishment is more visible and centrally located than that earlier demonstration, being opposite the famous Pompidou centre, benefiting from a high attendance.