Menu

Blog

Page 6491

Aug 28, 2020

People Power Increase Processing Speed

Posted by in categories: computing, neuroscience

Big initiatives to understand the workings of the brain

Neuroscience has a data problem. In our efforts to understand the brain researchers are generating ever greater amounts of data. The problem is, how can they gain meaning from it?

Continue reading “People Power Increase Processing Speed” »

Aug 28, 2020

How robots could help save underwater ecosystems

Posted by in category: robotics/AI

Why underwater robots are vacuuming up lionfish.

Aug 28, 2020

GM could offer Michelin’s airless tire soon

Posted by in category: futurism

No puncture, no pressure. GM could offer Michelin’s airless tire soon.

Aug 28, 2020

Rotary cell phone

Posted by in categories: futurism, mobile phones

A space engineer made a working rotary cell phone.

Aug 28, 2020

Tiny battery for micro robots

Posted by in categories: futurism, robotics/AI

This tiny battery could change the game for micro robots.

Aug 28, 2020

Superluminal Motion-Assisted 4-Dimensional Light-in-Flight Imaging

Posted by in categories: information science, mathematics, physics, robotics/AI

Abstract: Advances in high speed imaging techniques have opened new possibilities for capturing ultrafast phenomena such as light propagation in air or through media. Capturing light-in-flight in 3-dimensional xyt-space has been reported based on various types of imaging systems, whereas reconstruction of light-in-flight information in the fourth dimension z has been a challenge. We demonstrate the first 4-dimensional light-in-flight imaging based on the observation of a superluminal motion captured by a new time-gated megapixel single-photon avalanche diode camera. A high resolution light-in-flight video is generated with no laser scanning, camera translation, interpolation, nor dark noise subtraction. A machine learning technique is applied to analyze the measured spatio-temporal data set. A theoretical formula is introduced to perform least-square regression, and extra-dimensional information is recovered without prior knowledge. The algorithm relies on the mathematical formulation equivalent to the superluminal motion in astrophysics, which is scaled by a factor of a quadrillionth. The reconstructed light-in-flight trajectory shows a good agreement with the actual geometry of the light path. Our approach could potentially provide novel functionalities to high speed imaging applications such as non-line-of-sight imaging and time-resolved optical tomography.

Aug 28, 2020

How to make AI trustworthy

Posted by in categories: information science, robotics/AI, transportation

One of the biggest impediments to adoption of new technologies is trust in AI.

Now, a new tool developed by USC Viterbi Engineering researchers generates automatic indicators if data and predictions generated by AI algorithms are trustworthy. Their , “There Is Hope After All: Quantifying Opinion and Trustworthiness in Neural Networks” by Mingxi Cheng, Shahin Nazarian and Paul Bogdan of the USC Cyber Physical Systems Group, was featured in Frontiers in Artificial Intelligence.

Neural networks are a type of artificial intelligence that are modeled after the brain and generate predictions. But can the predictions these neural networks generate be trusted? One of the key barriers to adoption of self-driving cars is that the vehicles need to act as independent decision-makers on auto-pilot and quickly decipher and recognize objects on the road—whether an object is a speed bump, an inanimate object, a pet or a child—and make decisions on how to act if another vehicle is swerving towards it.

Aug 28, 2020

Quantum simulation of quantum crystals

Posted by in categories: particle physics, quantum physics

The quantum properties underlying crystal formation can be replicated and investigated with the help of ultracold atoms. A team led by Dr. Axel U. J. Lode from the University of Freiburg’s Institute of Physics has now described in the journal Physical Review Letters how the use of dipolar atoms enables even the realization and precise measurement of structures that have not yet been observed in any material. The theoretical study was a collaboration involving scientists from the University of Freiburg, the University of Vienna and the Technical University of Vienna in Austria, and the Indian Institute of Technology in Kanpur, India.

Crystals are ubiquitous in nature. They are formed by many different materials—from mineral salts to heavy metals like bismuth. Their structures emerge because a particular regular ordering of atoms or molecules is favorable, because it requires the smallest amount of energy. A cube with one constituent on each of its eight corners, for instance, is a that is very common in nature. A crystal’s determines many of its , such as how well it conducts a current or heat or how it cracks and behaves when it is illuminated by light. But what determines these crystal structures? They emerge as a consequence of the of and the interactions between their constituents, which, however, are often scientifically hard to understand and also hard measure.

To nevertheless get to the bottom of the quantum properties of the formation of crystal structures, scientists can simulate the process using Bose-Einstein condensates—trapped ultracold atoms cooled down to temperatures close to absolute zero or minus 273.15 degrees Celsius. The atoms in these highly artificial and highly fragile systems are extremely well under control.

Aug 28, 2020

DARPA Launches Project CHARIOT in Bid to Shield Big Tech Profits

Posted by in categories: computing, encryption, internet, military, quantum physics

DARPA announces a new type of cryptography to protect the Big Tech firm profits from the dawn of quantum computers and allow backdoor access into 3 trillion internet-connected devices.

by Raul Diego

Continue reading “DARPA Launches Project CHARIOT in Bid to Shield Big Tech Profits” »

Aug 28, 2020

Researchers have a bold proposal to tackle one of the biggest barriers to more renewable energy

Posted by in categories: energy, sustainability

The phrase “too much of a good thing” may sound like a contradiction, but it encapsulates one of the key hurdles preventing the expansion of renewable energy generation. Too much of a service or commodity makes it harder for companies to sell them, so they curtail production.

Usually that works out fine: The market reaches equilibrium and economists are happy. But external factors are bottlenecking renewable electricity despite the widespread desire to increase its capacity.

UC Santa Barbara’s Sangwon Suh is all too familiar with this issue. The professor of industrial ecology has focused on it and related challenges for at least the past two years at the Bren School of Environmental Science & Management. “Curtailment is the biggest problem of renewable we are facing,” said Suh, who noted it will only escalate as renewable energy capacity increases.