Toggle light / dark theme

Data collected can be used to provide new insights into the evolution of the Kuiper Belt, and the larger solar system.

Trans-Neptunian Objects (TNOs), small objects that orbit the sun beyond Neptune, are fossils from the early days of the solar system which can tell us a lot about its formation and evolution.

A new study led by Mohamad Ali-Dib, a research scientist at the NYU Abu Dhabi Center for Astro, Particle, and Planetary Physics, reports the significant discovery that two groups of TNOs with different surface colors also have very different orbital patterns. This new information can be compared to models of the solar system to provide fresh insights into its early chemistry. Additionally, this discovery paves the way for further understanding of the formation of the Kuiper Belt itself, an area beyond Neptune comprised of icy objects, that is also the source of some comets.

WTF?! On Thursday the Security Service of Ukraine (SSU) reported that they had shut down a cryptomining operation in the city of Vinnytsia, seizing over 500 GPUs and 50 processors — and a bunch of Playstation 4s. Consoles built on 2013-era technology might not be great at mining, but they don’t need to be when you have 3800 of them.

Although the market for GPUs is starting to improve, and dedicated ASICs might be on the way to relieve demand, it seems that one group of enterprising cryptocurrency miners have turned to last-gen console hardware to get things done.

From the photos provided by the SSU, it looks like these consoles are of the PS4 Slim variety, the 2016 refresh of the original console from three years prior. Mostly obsolete for newer games, it’s not at all surprising that so many could be sourced en masse so easily.

A rare group of humans known as “superagers” can grow up without their minds growing old.

Even in their 60s, 70s, and 80s, a lucky few maintain incredibly youthful memories, recalling new experiences, events, and situations just as well as people decades younger.

New research now suggests that’s because their brains have somehow resisted the march of time.

The size of a tennis ball. The mass of the Earth.


But that could change soon.

Current gravitational wave observatories are sensitive to the mergers of stellar-mass black holes. We’ve observed a few mergers involving neutron stars, but most have been between black holes on the order of tens of solar masses.

We can’t yet observe the gravitational waves of supermassive black holes in other galaxies, nor can we observe those of planet-sized worlds. Proposed detectors such as eLISA will allow us to observe the former, but it will take a novel new idea to detect the latter.

A new laser that generates quantum particles can recycle lost energy for highly efficient, low threshold laser applications.

Scientists at KAIST have fabricated a laser system that generates highly interactive quantum particles at room temperature. Their findings, published in the journal Nature Photonics, could lead to a single microcavity laser system that requires lower threshold energy as its energy loss increases.

The system, developed by KAIST physicist Yong-Hoon Cho and colleagues, involves shining light through a single hexagonal-shaped microcavity treated with a loss-modulated silicon nitride substrate. The system design leads to the generation of a polariton laser at room temperature, which is exciting because this usually requires cryogenic temperatures.