Toggle light / dark theme

Summary: Using human stem cells to develop a brain organoid model, researchers were able to show exposure to a common pesticide synergizes with an autism-linked gene mutation. The study provides clear evidence that genetics and environment may combine to disrupt neurodevelopment.

Source: Johns Hopkins University.

Researchers at Johns Hopkins Bloomberg School of Public Health have shown in a brain organoid study that exposure to a common pesticide synergizes with a frequent autism-linked gene mutation.

University of California San Diego scientists have now developed several genetic editing tools that help pave the way to an eventual gene drive designed to stop Culex mosquitoes from spreading disease. Gene drives are designed to spread modified genes, in this case those that disable the ability to transmit pathogens, throughout the targeted wild population.


Genetics toolkit targets less researched Culex mosquitoes, which transmit West Nile virus and avian malaria.

Since the onset of the CRISPR genetic editing revolution, scientists have been working to leverage the technology in the development of gene drives that target pathogen-spreading mosquitoes such as Anopheles and Aedes species, which spread malaria, dengue, and other life-threatening diseases.

Once studied by Charles Darwin, the Venus flytrap is perhaps the most famous plant that moves at high speed. But as Daniel Rayneau-Kirkhope explains, researchers are still unearthing new scientific insights into plant motion, which could lead to novel, bio-inspired robotic structures.

“In the absence of any other proof,” Isaac Newton is once said to have proclaimed, “the thumb alone would convince me of God’s existence.” With 29 bones, 123 ligaments and 34 muscles pulling the strings, the human hand is indeed a feat of nature’s engineering. It lets us write, touch, hold, feel and interact in exquisite detail with the world around us.

To replicate the wonders of the human hand, researchers in the field of “soft robotics” are trying to design artificial structures made from flexible, compliant materials that can be controlled and programmed by computers. Trouble is, the hand is such a complex structure that it needs lots of computing power to be properly controlled. That’s a problem when developing prosthetic hands for people who have lost an arm in, say, an accident or surgery.

Timestamps:

0:00 How the Rose lab more than doubled the lifespan of Drosophila.
17:20 Use of machine learning (ML) and multi-‘omics to characterize aging, and use of ML to develop interventions.
37:04 Adherence to an ancestral diet in Drosophila extends healthspan relative to their evolutionary recent diet.
40:35 The importance of measuring objective markers of health to determine if one’s diet is best for them.
44:04 Does aging stop, and use of biomarker testing to help decipher/optimize that.
53:33 The importance of characterizing aging for both Drosophila and its co-associated microbiome.
1:00:35 Why a massive, wide-scale, Manhattan-project approach for increasing human lifespan is necessary.

Now researchers have used US economic, health, and demographic data to put a price on just how valuable such an intervention could be. In a paper in Nature Aging, they showed that treatments that slow down aging could be worth US$38 trillion for every extra year of life they give people.

This isn’t the first time someone has tried to pin a number on the benefits of slowing aging. The authors reference a 2013 study in Health Affairs, which estimated that a 2.2-year increase in life expectancy could be worth as much as $7.1 trillion over 50 years.

The new study uses a different methodology, though, known as value of statistical life. This is the measure used by various US agencies and represents how much people would be willing to pay to reduce their risk of dying. It incorporates concepts like health, consumption, and leisure, and therefore measures not just quantity but quality of life.

Why can atoms or elementary particles behave like waves according to quantum physics, which allows them to be in several places at the same time? And why does everything we see around us obviously obey the laws of classical physics, where that is impossible? To answer those questions, in recent years researchers have coaxed larger and larger objects into behaving quantum mechanically. One consequence of this is that, when passing through a double slit, they form an interference pattern that is characteristic of waves.

Up to now this could be achieved with molecules consisting of a few thousand atoms. However, physicists hope one day to be able to observe such quantum effects with properly macroscopic objects. Lukas Novotny, Professor of Photonics, and his collaborators at the Department of Information Technology and Electrical Engineering at ETH Zurich have now made a crucial step in that direction. Their results were recently published in the scientific journal Nature.


Researchers at ETH Zurich have trapped a tiny sphere measuring a hundred nanometres using laser light and slowed down its motion to the lowest quantum mechanical state. Based on this, one can study quantum effects in macroscopic objects and build extremely sensitive sensors.

The “show” starts with a robot grabbing a handful of dough and depositing it on a pan, where another bot flattens it, a third applies tomato sauce, etc. From dough-grabbing to inserting in the oven, preparing a pizza takes just 45 seconds. The oven can bake 6 pizzas at a time, yielding about 80 pizzas per hour. Once a pizza is baked to gooey perfection, a robot slices it and places it in a box, and it’s then transferred (by a robot, of course) to a numbered cubby from which the customer can retrieve it.

It’s a shame the pizzeria didn’t open during the height of the pandemic, as its revenues likely would have gone through the roof given that there’s zero person-to-person contact required for you to get a fresh, custom-made pizza in your hands (and more importantly, your belly!).

Pazzi’s creators spent eight years researching and developing the pizza bots, and they say the hardest part was getting the bots to work effectively with the raw dough. Since it’s made with yeast, the dough is sensitive to changes in temperature, humidity, and other factors, and for optimal results it needs to be rolled out and baked with very precise timing.