Toggle light / dark theme

This study builds on an earlier paper by the Rothstein lab that looked at the most common genetic cause of ALS, a mutation in the C9orf72 gene (also referred to as the “C9 mutation”). There, they showed that the C9 mutation produced defects in a structure called the nuclear pore that is responsible for moving proteins and other molecules in and out of the nucleus of cells.


Amyotrophic lateral sclerosis (ALS) is a rapidly progressive and fatal degenerative disease affecting the nerve cells in the brain and spinal cord responsible for controlling voluntary muscle movement. “Sporadic” or non-inherited ALS, accounts for roughly 90% percent of cases, and 10% of cases are due to known genetic mutations. By studying lab-grown neurons derived from skin or blood cells from 10 normal controls, eight with an ALS causing mutation, and 17 with non-inherited ALS, researchers have found a possible starting point for the dysfunction that causes the disease. The study, which was published in Science Translational Medicine, was funded in part by the National Institute for Neurological Disorders and Stroke (NINDS), part of the National Institutes of Health.

Using a library of ALS patient-derived , the research team led by Jeffrey Rothstein, M.D., Ph.D., at Johns Hopkins University School of Medicine, Baltimore, developed induced (iPSC)-derived neurons from the patients’ cultured cells to discover a common defect regardless of whether the cell came from persons with inherited or non-inherited ALS. They report that in ALS nerve cells, there is an accumulation of a protein called CHMP7 in the nucleus of cultured nerve cells as well as in ALS samples from the brain region that controls movement. Treatments that decrease the amount of CHMP7 in the cultured cells prevented a series of abnormalities that are characteristic of ALS.

“There is considerable interest in identifying new therapeutic targets for ALS, particularly for the sporadic form of the disorder,” said Amelie Gubitz, Ph.D., program director, NINDS. “Gene-targeting strategies like the one shown here now allow us to move from biological discovery straight to therapy development.”

Following the approval of the consent law by Danish parliament in December 2020, a team of Danish developers released iConsent, which allows users to send a request for consent via their phone to a potential partner, who can then accept or reject the encounter. Via @WIREDUK


Denmark’s iConsent aims to support new sexual consent legislation – but does it lack the sex appeal for everyday use?

Big shift in the making.


✅ Want to maximize your business banking? Check out NorthOne*: https://get.northone.com/minoritymindset/
*This is an advertisement. Minority Mindset is compensated by NorthOne.

✅ Join Our FREE Guac Talk Community on Discord & chat with other Money Minds: https://discord.gg/ZEHs3M69a6

A company that makes an implantable brain-computer interface (BCI) has been given the go-ahead by the Food and Drug Administration to run a clinical trial with human patients. Synchron plans to start an early feasibility study of its Stentrode implant later this year at Mount Sinai Hospital, New York with six subjects. The company said it will assess the device’s “safety and efficacy in patients with severe paralysis.” https://www.engadget.com/fda-brain-computer-interface-clinic…ml?src=rss


A company that makes an implantable has been given the go-ahead by the Food and Drug Administration to run a clinical trial with human patients. Synchron plans to start an early feasibility study of its Stentrode implant later this year at Mount Sinai Hospital, New York with six subjects. The company said it will assess the device’s “safety and efficacy in patients with severe paralysis.”

Synchron received the FDA’s green light ahead of competitors like Elon Musk’s. Before such companies can sell BCIs commercially in the US, they need to prove that the devices work and are safe. The FDA will provide guidance for trials of BCI devices for patients with paralysis or amputation during a webinar on Thursday.

Another clinical trial of Stentrode is underway in Australia. Four patients have received the implant, which is being used “for data transfer from motor cortex to control digital devices,” Synchron said. According to data published in the Journal of NeuroInterventional Surgery, two of the patients were able to control their computer with their thoughts. They completed work-related tasks, sent text messages and emails and did online banking and shopping.

Reviewing the images of Ganymede’s aurora, the team discovered that, as the moon’s surface temperature rises and falls throughout the day, it becomes warm enough around noon near the equator for sublimation to occur, releasing water molecules.

“In a wider sense, this discovery shows that often one needs to know what to focus on when analyzing data. The signal from H2O was present in the HST images since 1998,” said lead author Lorenz Roth. “Only with additional information through new data and predictions from theoretical studies, we knew what to look for and where to search for it. There are likely many more things to discover in the gigantic dataset that the Hubble Space Telescope has accumulated over its three decades in space.”

Where there’s water, there could be life as we know it. Astronomers say that finding liquid water beyond Earth is crucial in our hunt for other habitable worlds.

Yesterday, LHCb presented results consistent with the presence of charm content in the proton.

See our news: #IC


Fourteen billion years ago, the Universe began with a bang. Crammed within an infinitely small space, energy coalesced to form equal quantities of matter and antimatter. But as the Universe cooled and expanded, its composition changed. Just one second after the Big Bang, antimatter had all but disappeared, leaving matter to form everything that we see around us — from the stars and galaxies, to the Earth and all life that it supports.

A transformative artificial intelligence (AI) tool called AlphaFold, which has been developed by Google’s sister company DeepMind in London, has predicted the structure of nearly the entire human proteome (the full complement of proteins expressed by an organism). In addition, the tool has predicted almost complete proteomes for various other organisms, ranging from mice and maize (corn) to the malaria parasite.

The more than 350000 protein structures, which are available through a public database, vary in their accuracy. But researchers say the resource — which is set to grow to 130 million structures by the end of the year — has the potential to revolutionize the life sciences.