Toggle light / dark theme

A study by NASA has used precision-tracking data from the Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer (OSIRIS-REx) spacecraft to more accurately plot the route of potentially hazardous asteroid Bennu from now until the year 2300.

The agency’s new data, published this week in Icarus, has significantly reduced the uncertainties related to its future orbit, and improved scientists’ ability to determine the total impact probability and predict the orbits of other asteroids.

“NASA’s Planetary Defense mission is to find and monitor asteroids and comets that can come near Earth and may pose a hazard to our planet,” said Kelly Fast, program manager for the Near-Earth Object Observations Program at NASA Headquarters in Washington. “We carry out this endeavour through continuing astronomical surveys that collect data to discover previously unknown objects and refine our orbital models for them. The OSIRIS-REx mission has provided an extraordinary opportunity to refine and test these models, helping us better predict where Bennu will be when it makes its close approach to Earth more than a century from now.”

Engineers at the University of Pennsylvania have found a new way to build and package microbatteries that drastically improve energy and power density even at the smallest sizes. They developed a new kind of current collector and cathode that increases the fraction of materials that store energy while simultaneously serving as a protective shell. This reduces the need for non-conductive packaging that normally protects a battery’s sensitive internal chemicals.


It weighs the same as two grains of rice but has the energy density of a much larger, heavier battery.

Materials that change their properties in response to certain stimuli could come to occupy a valuable space in many fields, ranging from robotics, to medical care, to advanced aircraft. A new example of this type of shape-shifting technology is modeled on ancient chain mail armor, enabling it to swiftly switch from flexible to stiff thanks to carefully arranged interlocking particles.

Contact Seller


Message.

Yes this says a 3 year epigenetic clock reversal in just 8 weeks thanks to diet and lifestyle changes. There is a list of supplements too:

Alpha ketoglutarate, vitamin C and vitamin A curcumin, epigallocatechin gallate (EGCG), rosmarinic acid, quercetin, luteolin.


Manipulations to slow biological aging and extend healthspan are of interest given the societal and healthcare costs of our aging population. Herein we report on a randomized controlled clinical trial conducted among 43 healthy adult males between the ages of 50–72. The 8-week treatment program included diet, sleep, exercise and relaxation guidance, and supplemental probiotics and phytonutrients. The control group received no intervention. Genome-wide DNA methylation analysis was conducted on saliva samples using the Illumina Methylation Epic Array and DNAmAge was calculated using the online Horvath DNAmAge clock (2013). The diet and lifestyle treatment was associated with a 3.23 years decrease in DNAmAge compared with controls (p=0.018). DNAmAge of those in the treatment group decreased by an average 1.96 years by the end of the program compared to the same individuals at the beginning with a strong trend towards significance (p=0.066). Changes in blood biomarkers were significant for mean serum 5-methyltetrahydrofolate (+15%, p=0.004) and mean triglycerides (−25%, p=0.009). To our knowledge, this is the first randomized controlled study to suggest that specific diet and lifestyle interventions may reverse Horvath DNAmAge (2013) epigenetic aging in healthy adult males. Larger-scale and longer duration clinical trials are needed to confirm these findings, as well as investigation in other human populations.

Keywords: DNA methylation, epigenetic, aging, lifestyle, biological clock.

Engineers at Caltech and JPL

The Jet Propulsion Laboratory (JPL) is a federally funded research and development center managed for NASA by the California Institute of Technology (Caltech). The laboratory’s primary function is the construction and operation of planetary robotic spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network. JPL implements programs in planetary exploration, Earth science, space-based astronomy and technology development, while applying its capabilities to technical and scientific problems of national significance.

Artificial intelligence research company OpenAI has announced the development of an AI system that translates natural language to programming code—called Codex, the system is being released as a free API, at least for the time being.

Codex is more of a next-step product for OpenAI, rather than something completely new. It builds on Copilot, a tool for use with Microsoft’s GitHub code repository. With the earlier product, users would get suggestions similar to those seen in autocomplete in Google, except it would help finish lines of code. Codex has taken that concept a huge step forward by accepting sentences written in English and translating them into runnable code. As an example, a user could ask the system to create a web page with a certain name at the top and with four evenly sized panels below numbered one through four. Codex would then attempt to create the page by generating the code necessary for the creation of such a site in whatever language (JavaScript, Python, etc.) was deemed appropriate. The user could then send additional English commands to build the website piece by piece.

Codex (and Copilot) parse written text using OpenAI’s language generation model—it is able to both generate and parse code, which allowed users to use Copilot in custom ways—one of those ways was to generate programming code that had been written by others for the GitHub repository. This led many of those who had contributed to the project to accuse OpenAI of using their code for profit, a charge that could very well be levied against Codex, as well, as much of the it generates is simply copied from GitHub. Notably, OpenAI started out as a nonprofit entity in 2,015 and changed to what it described as a “capped profit” entity in 2019—a move the company claimed would help it get more funding from investors.

Houston-based ThirdAI, a company building tools to speed up deep learning technology without the need for specialized hardware like graphics processing units, brought in $6 million in seed funding.

Neotribe Ventures, Cervin Ventures and Firebolt Ventures co-led the investment, which will be used to hire additional employees and invest in computing resources, Anshumali Shrivastava, Third AI co-founder and CEO, told TechCrunch.

Shrivastava, who has a mathematics background, was always interested in artificial intelligence and machine learning, especially rethinking how AI could be developed in a more efficient manner. It was when he was at Rice University that he looked into how to make that work for deep learning. He started ThirdAI in April with some Rice graduate students.