Toggle light / dark theme

Using specialized nanoparticles embedded in plant leaves, MIT engineers have created a novel light-emitting plant that can be charged by an LED. In this image, the green parts are the nanoparticles that have been aggregated on the surface of spongy mesophyll tissue within the plant leaves. Credit: Courtesy of the researchers.

Using nanoparticles that store and gradually release light, engineers create light-emitting plants that can be charged repeatedly.

Using specialized nanoparticles embedded in plant leaves, MIT.

Researchers at Skolkovo Institute of Science and Technology (Skoltech) in Russia have recently developed an innovative system for human-swarm interactions that allows users to directly control the movements of a team of drones in complex environments. This system, presented in a paper pre-published on arXiv is based on an interface that recognizes human gestures and adapts the drones’ trajectories accordingly.

Quadcopters, drones with four rotors that can fly for long periods of time, could have numerous valuable applications. For instance, they could be used to capture images or videos in natural or remote environments, can aid search-and– and help to deliver goods to specific locations.

So far, however, drones have rarely been deployed for these applications and have instead been primarily used for entertainment purposes. One of the reasons for this is that complex missions in unknown environments require users operating the drones to have a basic understanding of sophisticated algorithms and interfaces.

Disaster sciences, digital twins & artificial intelligence — craig fugate, chief emergency management officer, one concern.


Mr. Craig Fugate is the former Director of the Florida Division of Emergency Management, and former administrator of the Federal Emergency Management Agency (FEMA — an agency of the United States Department of Homeland Security, whose primary purpose is to coordinate the response to disasters that have occurred in the United States and that overwhelm the resources of local and state authorities.)

Mr. Fugate is currently the Chief Emergency Management Officer of One Concern, (a Resilience-as-a-Service solutions company that brings disaster science together with machine learning for better decision making).

Physicists with the Harvard-MIT Center for Ultracold Atoms have just announced new success with a particular style of quantum computer —a “programmable quantum simulator”. In this architecture, they take supercold rubidium atoms and use optical tweezers (beams of light) to arrange the atoms into shapes.

As the Harvard Gazette writes …

This new system allows the atoms to be assembled in two-dimensional arrays of optical tweezers. This increases the achievable system size from 51 to 256 qubits. Using the tweezers, researchers can arrange the atoms in defect-free patterns and create programmable shapes like square, honeycomb, or triangular lattices to engineer different interactions between the qubits.

Black holes are getting weirder by the day. When scientists first confirmed the behemoths existed back in the 1970s, we thought they were pretty simple, inert corpses. Then, famed physicist Stephen Hawking discovered that black holes aren’t exactly black and they actually emit heat. And now, a pair of physicists has realized that the sort-of-dark objects also exert a pressure on their surroundings.

The finding that such simple, non-rotating “black holes have a pressure as well as a temperature is even more exciting given that it was a total surprise,” co-author Xavier Calmet, a professor of physics at the University of Sussex in England, said in a statement.

Earlier this year, two astronomers discovered what could be the largest comet ever seen in the solar system while combing through data collected by the Dark Energy Survey. Now, a new study led by the same scientists describes this beefy deep space monster as the “nearly spherical cow of comets.”

The comet is cataloged as Comet C/2014 UN271 but is also known as Comet Bernardinelli-Bernstein for its discovery duo, Pedro Bernardinelli and Gary Bernstein, both from the University of Pennsylvania.

Unlock the biggest mysteries of our planet and beyond with the CNET Science newsletter. Delivered Mondays.

New chip eliminates the need for specific decoding hardware, could boost efficiency of gaming systems, 5G networks, the internet of things, and more.


A new silicon chip can decode any error-correcting code through the use of a novel algorithm known as Guessing Random Additive Noise Decoding (GRAND). The work was led by Muriel Médard, an engineering professor in the MIT Research Laboratory of Electronics.

Summary: Mouse study reveals chronic stress affects neurogenesis in the dentate gyrus.

Source: Tokyo University of Science.

Depression is a serious medical condition that plagues modern society. Several theories have been proposed to explain the physiological basis of depression, of which the “neurogenic hypothesis of depression” has garnered much attention.

To use the metaphor of our Information Age, consciousness to humans is as Cloud to computers. Just like your smartphone, your brain is a ‘bio’-logical computing device of your mind, an interface for physical reality. Our minds are connected into the greater mind-network, as computers in the Cloud. Viewed in this way, consciousness is ‘non-local’ Cloud, our brain-mind systems are receivers, processors and transmitters of information within that Cloud. What were the most significant factors in evolution of the human mind? What’s the connection between quantum physics and consciousness? What role does quantum information play in our self-reflective consciousness? What is non-local consciousness? Do our minds create reality? These are some of the most salient questions addressed in this Part II of the documentary.

#consciousness #evolution #mind #documentary #film


By Elizabeth Titovskaya.