Menu

Blog

Page 6308

Apr 1, 2021

How Metaphors Shape Our Ideas About Education

Posted by in categories: education, electronics

An interview with Dr. Yulia Turchaninova on What would be your take on that?


Many parents employ a “job” metaphor for school. But as a parent, do you bring your work home every night? Do it over the weekend? Take it with you on vacation? And if you do, are you still eager to work on it when the whole family sits down to chat, play and watch TV after dinner? And how many direct bosses do you have above you? How about six to eight different ones a day, each with their own quirks? Do they replace each other at the ring of the bell, demanding that you instantly and completely switch to the new assignment, regardless of whether you have completed the previous one, and do it in their idiosyncratic way? And if you do, is this the kind of life that you would wish for your children?

Brodsky: So, what would be a better way of treating our metaphors?

Continue reading “How Metaphors Shape Our Ideas About Education” »

Apr 1, 2021

Vaccine passports launched in Las Vegas but privacy, choice still concerns

Posted by in categories: biotech/medical, business, health

A handful of passports are already in the works, including two in Las Vegas. It is not yet clear if any Las Vegas businesses will limit access solely to vaccinated guests.


Las Vegas is no stranger to exclusive VIP lists, but there’s a new way of limiting guest access coming to town: vaccine passports.

These digital credential systems can show whether someone has been vaccinated against COVID-19 and can help businesses limit access to those who have been inoculated. The systems were designed to increase health and safety at various venues, but experts warn of pushback over concerns on privacy and personal choice.

Continue reading “Vaccine passports launched in Las Vegas but privacy, choice still concerns” »

Apr 1, 2021

Artificial Life Forged in a Lab? Scientists Create Synthetic Cell That Grows and Divides Normally

Posted by in category: particle physics

New findings shed light on mechanisms controlling the most basic processes of life.

Five years ago, scientists created a single-celled synthetic organism that, with only 473 genes, was the simplest living cell ever known. However, this bacteria-like organism behaved strangely when growing and dividing, producing cells with wildly different shapes and sizes.

Now, scientists have identified seven genes that can be added to tame the cells’ unruly nature, causing them to neatly divide into uniform orbs. This achievement, a collaboration between the J. Craig Venter Institute (JCVI), the National Institute of Standards and Technology (NIST) and the Massachusetts Institute of Technology (MIT) Center for Bits and Atoms, is described in the journal Cell.

Apr 1, 2021

Simulating the Universe a Trillionth of a Second After the Big Bang

Posted by in categories: computing, cosmology

The Big Bang remains the best way to explain what happened at the beginning of the Universe. However, the incredible energies flowing during the early part of the bang are almost incomprehensive to our everyday experience. Luckily, computers aren’t so attached to normal human ways of thinking and have long been used to model the early universe right after the Bang. Now, a team from the University of Göttingen have created the most comprehensive model of what exactly happened in that very early stage of the universe – one trillionth of a second after the Big Bang.

Just because a computer can model it doesn’t really mean it is easy to explain, however. The model includes clumps of energy weighing grams, but which are one millionth the size of a single proton. These energy structures defined what would eventually become the structure of the universe today, with tiny variations in the original structure resulting in entire galaxies or complete voids, depending on the presence or absence of matter.

Throwing this much computing power at a physical space one millionth the size of a proton was no mean feat. “It is probably the largest simulation of the smallest area of the Universe that has been carried out thus far” says Professor Jens Niemeyer, who leads the group carrying out the research.

Apr 1, 2021

The Closest Star Cluster to Earth is Being Dismantled in Front of our Eyes

Posted by in categories: computing, cosmology, mapping

Star clusters are interesting inhabitants of the sky. They vary in sizes, distances, and number of stars, but almost all are spectacular to look at. And most of them are in the process of being torn apart. That is certainly the case for the Hyades star cluster – the closest one to Earth at only 153 light years away. The problem is, there is something causing a lot more destruction than would be expected given the mass and energy in the surrounding space. Now, a team of scientists from ESA have a theory as to what the cause of the destruction might be – a mysterious dark matter sub-halo.

This novel theory extends from findings gleaned from data collected by GAIA, ESA’s star mapping satellite. The GAIA team expected to see what are called “tidal tails” trailing and leading the star cluster as it moves throughout the galaxy. These tails are formed when some stars are forced to the outer edges of the cluster, and then pulled by the gravitational pull of the galaxy itself, pushing some stars forward in their journey through the galaxy, while other stars are pulled further behind.

The GAIA team did find tidal tails on either side of the Hyades cluster when they observed it. However, they were extraordinarily long – thousands of light years across the galaxy, each holding thousands of stars. Observing them in their entirety was only possible because of the GAIA data and a computer model that Dr. Tereza Jerabkova, an ESA research fellow, developed with her colleagues.

Apr 1, 2021

Social Determinants of Health Impact Fetal Brain Development

Posted by in categories: biotech/medical, education, employment, health, neuroscience

New data from Children’s National Hospital shows parental experience with a number of social determinants of health can ultimately impact brain development in utero, something researchers said should suggest future community health intervention among pregnant people. The data, published in JAMA Network Open, specifically found poorer brain development in fetuses among pregnant people with low socioeconomic status (SES), low educational attainment, and limited employment opportunity.


New data from Children’s National Hospital has found that social determinants of health like income, education, and occupation can impact fetal brain development, following that child into life.

Apr 1, 2021

Lab-made hexagonal diamonds stiffer than natural diamonds

Posted by in categories: materials, physics

Nature’s strongest material now has some stiff competition. For the first time, researchers have hard evidence that human-made hexagonal diamonds are stiffer than the common cubic diamonds found in nature and often used in jewelry.

Named for their six-sided , hexagonal diamonds have been found at some meteorite impact sites, and others have been made briefly in labs, but these were either too small or had too short of an existence to be measured.

Now scientists at Washington State University’s Institute for Shock Physics created hexagonal diamonds large enough to measure their stiffness using . Their findings are detailed in a recent paper in Physical Review B.

Apr 1, 2021

New theory suggests uranium ‘snowflakes’ in white dwarfs could set off star-destroying explosion

Posted by in categories: cosmology, materials

A pair of researchers with Indiana University and Illinois University, respectively, has developed a theory that suggests crystalizing uranium “snowflakes” deep inside white dwarfs could instigate an explosion large enough to destroy the star. In their paper published in the journal Physical Review Letters, C. J. Horowitz and M. E. Caplan describe their theory and what it could mean to astrophysical theories about white dwarfs and supernovas.

White dwarfs are small stars that have burned up most of their nuclear fuel—they are typically much cooler than they once were and are very dense. In this new effort, Horowitz and Caplan used data from the Gaia space observatory to theorize that sometimes small grains of uranium could begin to crystalize (due to enriched actinides), forming what they describe as snowflakes. They suggest this could happen because of the differing melting points of the material involved. They further suggest that if this were to occur, it could lead to splitting of atomic nuclei, resulting in a series of fission reactions as the solids become enriched in actinides. And if such reactions were to raise the temperature of the interior of the star by igniting carbon, the result would likely be merging of atomic nuclei and eventually a very large fusion reaction that would result in a large explosion—likely large enough to destroy the star.

Apr 1, 2021

Particles of a Meteor Explosion From 430,000 Years Ago Found Hidden in Antarctic Ice

Posted by in categories: asteroid/comet impacts, existential risks, particle physics

Approximately 430000 years ago, a meteorite exploded over Antarctica.

The only reason we know about it now is because scientists have just found tiny, once-molten particles of space rock that have been hidden away in the ice ever since.

Based on an analysis of those particles, the event was an unusual one — not quite powerful enough to produce an impact crater, but nor was it a lightweight. The jet of melted and vaporized material that blasted from the mid-air explosion would have been more hazardous than the Tunguska event that flattened a Siberian forest in 1908.

Apr 1, 2021

A Gamma-Ray Burst Just Revealed a ‘Goldilocks’ Black Hole in The Early Universe

Posted by in category: cosmology

Scientists have reported the discovery of a rare, medium-sized black hole that may help answer one of the more tantalizing questions in astronomy: how do their supermassive counterparts come into being?

There are two well-known sizes of black hole — at one end, so-called stellar-class ones which are typically three to ten times the mass of our Sun — and at the other, supermassive ones, found at the center of most galaxies, including the Milky Way, which are millions to billions times heavier.

The newly detected ‘goldilocks’ black hole — about 55000 solar masses — could be a missing link between these two extremes, scientists suggested Monday in the journal Nature Astronomy.