Toggle light / dark theme

Have you missed the SR Academy Webinar with Seth Shostak of the SETI Institute?

Here you can watch the complete video, including the discussion after the lecture:

A beautiful excursus on the mission, activities and goals of Search for Extra Terrestrial Intellogence, directly from the source!

Seth Shostak is currently the senior astronomer for the SETI Institute. Shostak hosts SETI’s weekly radio show/podcast Big Picture Science, has played himself numerous times in TV and internet film dramas, and has acted in several science fiction films.

Circa 1991 😀


An Australian company has launched an erasable computer memory chip that retains data when its power source is switched off. The chip could revolutionise the design of computers and other electronic devices by doing away with the bulky magnetic disc memories that are currently used to store data permanently.

Current computers rely on a selection of memory devices. These include chips known as read-only memories or ROMs that store preprogrammed data without power but cannot be erased, and instantly erasable chips that require constant power, known as random-access memory or RAMs. To store more data and programs when the power is off, most computers use magnetics discs.

The new chip is known as a ferroelectric random-access memory or FRAM. If it proves as successful as its developer, Ramtron, claims, it could replace all other types of data storage.

Quantum computers in regular logical computers.


Quantum teleportation and quantum error correction play crucial roles in fault-tolerant quantum computing. Here, we implemented error-correctable quantum teleportation to manipulate a logical qubit and observed the protection of quantum information. Our work presents a useful technology for scalable quantum computing and can serve as a quantum simulator for holographic quantum gravity.

Quantum error correction is an essential tool for reliably performing tasks for processing quantum information on a large scale. However, integration into quantum circuits to achieve these tasks is problematic when one realizes that nontransverse operations, which are essential for universal quantum computation, lead to the spread of errors. Quantum gate teleportation has been proposed as an elegant solution for this. Here, one replaces these fragile, nontransverse inline gates with the generation of specific, highly entangled offline resource states that can be teleported into the circuit to implement the nontransverse gate. As the first important step, we create a maximally entangled state between a physical and an error-correctable logical qubit and use it as a teleportation resource. We then demonstrate the teleportation of quantum information encoded on the physical qubit into the error-corrected logical qubit with fidelities up to 0.786.

StoreDot, an Israeli developer of extreme fast-charging (XFC) battery technology for electric vehicles, unveiled this month what it called the “world’s first” silicon-dominant battery prototype capable of recharging in just 10 minutes.

The company’s cylindrical cells use a 4,680 format — 46 millimeters wide by 80 millimeters long — that is favored by global carmakers, specifically electric vehicle giant Tesla.

The battery tech has been in development for three years and includes five patents in cell design, StoreDot said in a statement last week. The design “increases throughput and addresses safety and performance issues typically associated with the hard case structure of cylindrical cells,” the company said.

The long-awaited $355 million development of Little Island New York has finally been made reality, offering the Big Apple a unique new space.


Although it’s unlikely travel to the US will be on the cards for Aussies anytime soon, it’s good to keep track of the developments that await us when we eventually graduate from tiny travel bubbles to full-scale international adventure once again. The latest development: the ambitious new US$260 million (AU$335 million) Little Island New York, an offshore public park in the Hudson River that has been one of the city’s most anticipated openings for a couple of years now.

Located at Pier 55 the fascinating public park has been designed to resemble a supersized leaf drifting on the Hudson, buoyed by a base of 280 concrete piles and precast columns driven down as far as 60 metres below water, as well as 132 tulip-shaped concrete pots positioned at various elevations from 4 metres to 18 metres above water, designed specifically by Heatherwick Studio, and developed by engineering firm Arup, to hold the soil, overlooks, and trees. This support base allows for the two-acre park to stay securely afloat so its 687-seat amphitheatre, smaller stage, and plaza don’t suddenly drop to the depths of the Hudson.

The waterborne engineering is almost as fascinating as the park itself, but it’s what’s on top this mini-island that represents what many reports are (hopefully not naively) likening to a bridge between New York City’s pre-and post-COVID era.