Toggle light / dark theme

PHILADELPHIA – Treating obese mice with the cytokine known as TSLP led to significant abdominal fat and weight loss compared to controls, according to new research published Thursday in Science from researchers in the Perelman School of Medicine at the University of Pennsylvania. Unexpectedly, the fat loss was not associated with decreased food intake or faster metabolism. Instead, the researchers discovered that TSLP stimulated the immune system to release lipids through the skin’s oil-producing sebaceous glands.

“This was a completely unforeseen finding, but we’ve demonstrated that fat loss can be achieved by secreting calories from the skin in the form of energy-rich sebum,” said principal investigator Taku Kambayashi, MD, PhD, an associate professor of Pathology and Laboratory Medicine at Penn, who led the study with fourth-year medical student Ruth Choa, PhD. “We believe that we are the first group to show a non-hormonal way to induce this process, highlighting an unexpected role for the body’s immune system.”

The animal model findings, Kambayashi said, support the possibility that increasing sebum production via the immune system could be a strategy for treating obesity in people.

NASA’s Space Launch System (SLS) rocket completed another milestone on its way to launch with the Umbilical Release and Retract Test (URRT). The URRT was performed on the rocket on September 19 while it stood in High Bay 3 of the Vehicle Assembly Building (VAB).

During the test, the swing arms and T0 umbilicals at the base of the rocket were commanded to retract from the vehicle as they will during a standard SLS launch countdown.

The test occurred on Mobile Launcher 1 (ML-1) and allowed ground teams to verify and validate the mechanisms, timings, and function of the umbilical release and retract system that will separate and move the arms — that support data and communications pathways as well as fueling ports for the upper stage — away from the SLS rocket and against the tower at launch.

It’s easy for us, as the vast architectures of cells that we are, to take it for granted that multicellularity is an unqualified advantage. But as far as we can tell from fossils, life seems to have been cheerfully unicellular for its first billion years. And even today, there are far more unicellular organisms than multicellular ones on the planet.


Researchers have discovered that environments favoring clumpy growth are all that’s needed to quickly transform single-celled yeast into complex multicellular organisms.

The size of a grain of sand, dispersed microfliers could monitor air pollution, airborne disease, and environmental contamination.

Northwestern University engineers have added a new capability to electronic microchips: flight.

About the size of a grain of sand, the new flying microchip (or “microflier”) does not have a motor or engine. Instead, it catches flight on the wind — much like a maple tree’s propeller seed — and spins like a helicopter through the air toward the ground.

In a new study, a team of researchers proposed that Dark Matter detectors could also search for the elusive force that is causing our Universe to expand (Dark Energy)!


About 25 years ago, astrophysicists noticed something very interesting about the Universe. The fact that it was in a state of expansion had been known since the 1920s, thanks to the observation of Edwin Hubble. But thanks to the observations astronomers were making with the space observatory that bore his name (the Hubble Space Telescope), they began to notice how the rate of cosmic expansion was getting faster!

This has led to the theory that the Universe is filled with an invisible and mysterious force, known as Dark Energy (DE). Decades after it was proposed, scientists are still trying to pin down this elusive force that makes up about 70% of the energy budget of the Universe. According to a recent study by an international team of researchers, the XENON1T experiment may have already detected this elusive force, opening new possibilities for future DE research.

A new paper takes a deep dive into primordial black holes that were formed as a part of the early universe when there were still no stars or galaxies. Such black holes could account for strange cosmic possibilities, including baby universes and major features of the current state of the cosmos like dark matter.

To study the exotic primordial black holes (PBHs), physicists employed the Hyper Suprime-Cam (HSC) of the huge 8.2m Subaru Telescope operating near the 4,200 meter summit of Mt. Mauna Kea in Hawaii. This enormous digital camera can produce images of the entire Andromeda galaxy every few minutes, helping scientists observe one hundred million stars in one go.