Toggle light / dark theme

Vertical Aerospace has already collected somewhere in the region of 1,000 orders for their VA-X4 VTOL craft. This is a piloted electric, low emission eVTOL craft that can carry up to four passengers and a pilot. This air taxi is capable of flying at speeds of 200 mph (174 knots) and has a range of more than 100 miles (160 km).

Being all-electric, it is near-silent during flight, offers a low-carbon solution to flying, and has a relatively low cost per passenger mile.

Vertical Aerospace’s VA-X4 also makes use of the latest in advanced avionics — some of which are used to control the world’s only supersonic VTOL aircraft, the F-35 fighter. Such sophisticated control systems enable the eVTOL tax to fly with some high level of automation and reduced pilot workload.

Taiwan’s TSMC and Japan’s Sony Group Corp are considering jointly building a chip factory in Japan, with the government ready to pay for some of the investment of about 800 billion yen ($7.15 billion), the Nikkei reported on Friday, October 8 2021. (

WORLD’S LARGEST CHIPMAKER TO RAISE PRICES, THREATENING COSTLIER ELECTRONICS

Both Sony and TSMC declined to comment. But TSMC, the world’s largest contract chipmaker and major Apple Inc supplier had said in July that it was reviewing a plan to set up production in Japan.

Researchers in Japan have developed a vaccination strategy in mice that promotes the production of antibodies that can neutralize not only SARS-CoV-2 but a broad range of other coronaviruses as well. If successfully translated to humans, the approach, to be published October 8 in the Journal of Experimental Medicine, could lead to the development of a next-generation vaccine capable of preventing future coronavirus pandemics.

The SARS-CoV-2 virus responsible for COVID-19 enters human cells by using its to bind to a called ACE2. The receptor-binding domain of the spike protein consists of two parts: a “core” region that is very similar in all coronaviruses, and a more specialized “head” region that mediates binding to ACE2.

Antibodies that recognize the head region of the spike receptor-binding domain can block the entry of SARS-CoV-2 into cells but offer little protection against other coronaviruses, such as the SARS-CoV-1 virus responsible for the severe acute respiratory syndrome outbreak of 2002. Antibodies that recognize the core region of the spike receptor-binding domain, in contrast, can prevent the entry of various coronaviruses into . Unfortunately, however, individuals exposed to the viral spike protein tend to produce lots of against the head region but few, if any, antibodies that recognize the core region.

Jeffrey Shainline is a physicist at NIST. Please support this podcast by checking out our sponsors:
- Stripe: https://stripe.com.
- Codecademy: https://codecademy.com and use code LEX to get 15% off.
- Linode: https://linode.com/lex to get $100 free credit.
- BetterHelp: https://betterhelp.com/lex to get 10% off.

Note: Opinions expressed by Jeff do not represent NIST.

EPISODE LINKS:
Jeff’s Website: http://www.shainline.net.
Jeff’s Google Scholar: https://scholar.google.com/citations?user=rnHpY3YAAAAJ
Jeff’s NIST Page: https://www.nist.gov/people/jeff-shainline.

PODCAST INFO: