Menu

Blog

Page 6212

Aug 28, 2021

This New Chip Architecture Can Deliver 1 Quadrillion Operations Per Second

Posted by in categories: computing, innovation

Circa 2019 o.o!


Groq, a rapidly growing startup that previously hired ten executives from Google for developing chipset architecture, has announced its new architecture named Tensor Streaming Processor that can perform 1 Peta operations per second on a single chip.

Tensor Streaming Processor (TSP) is the world’s first architecture to achieve this feat of performing 1 Peta or 1 quadrillion operations or 1e15 ops/s. Groq’s new architecture can also perform up to 250 trillion floating-point operations per second (FLOPS).

Continue reading “This New Chip Architecture Can Deliver 1 Quadrillion Operations Per Second” »

Aug 28, 2021

Glass Chip Is Key to New Quantum Architecture

Posted by in categories: computing, quantum physics

Maryland-based IonQ has unveiled a new kind of chip in its quest to scale up its type of quantum computer technology. Its computers calculate using the quantum states of ions electromagnetically trapped in the space near a chip. Previous traps were made using silicon chipmaking processes, but the company has now switched to an evaporated glass trap technology—a way of constructing micrometer-scale features in fused silica glass often used to make microfluidic chips. Its previous trap technology, the company says, could not have supported IonQ’s new quantum architecture, which is based on multiple chains of ion-based qubits. Ultimately, IonQ executives say, the glass chip’s reconfigurable chains of ions will allow for computers with qubits that number in the triple digits.

“The purpose of an ion trap is to move ions around with precision, hold them in the environment, and get out of the way of the quantum operation,” explains Jason Amini, who led the evaporated glass trap team at IonQ. The 3D glass and metal structure Amini’s team constructed does all three better than its previous chips could, Amini says. Stray electric fields from charge on the silicon-based chip could destabilize the ions’ delicate quantum states, reducing the fidelity of quantum computation. But the evaporated glass design “hides any material that could hold charge,” he says. The effect is a more stable trap that computes better.

Another advantage, Amini says, is that the trap could be shaped to “get out of the way” of quantum operations. In an ion trap computer the ions’ quantum states are manipulated by zapping them with lasers. “We have to bring a lot of laser beams over the surface,” says Amini. The glass chip is “shaped to allow lasers to come through and address the device.”

Aug 28, 2021

COVID-19: What you need to know about SARS-CoV-2 variants

Posted by in categories: biotech/medical, chemistry, evolution, genetics, health

Mutations are a part of life. Every time a virus replicates, there is a chance that its genetic code won’t be copied accurately. These typos travel inside new virus particles as they leave one body and move on to infect the next. Some of these mutations die out; others survive and circulate widely. Some mutations are harmless; others increase infectivity or allow a virus to better escape the immune system—that’s when public health bodies might deem that strain a variant of concern.

Swaps or deletions of single amino acids can change the shapes of different proteins. Mutations can happen in any of the proteins of SARS-CoV-2, and these may change the virus’s properties. Many of the worrisome mutations are found on the spike protein, as it is the target of antibody treatments and is mimicked by the currently authorized COVID-19 vaccines. Researchers are especially troubled when typos occur in two parts of the spike protein—the N-terminal domain, which is at the beginning of the protein and which some antibodies target, and the receptor-binding domain (RBD), which grabs hold of ACE2 receptors on human cells and starts the process of infection.

To understand how specific mutations affect the structure and function of the spike protein and what those changes mean for treatments and vaccines, C&EN talked to Priyamvada Acharya, Rory Henderson, and Sophie Gobeil at Duke University. With colleagues, these researchers have combined biochemical assays, cryo-electron microscopy, and modeling to show how the mutations seen in the variants of concern work together to change the stability of the spike protein. The spike is a trimer of three identical protein strands folded and interwoven together. Before the virus has infected a cell, the spike takes on two conformations: a down state, in which the RBD is hidden, and an up state, in which the RBD faces out, ready to bind to ACE2. The team found that different mutations can increase binding in different ways. This process, in which similar features are arrived at independently, is called convergent evolution.

Continue reading “COVID-19: What you need to know about SARS-CoV-2 variants” »

Aug 28, 2021

Advanced Civilizations Could be Using Dyson Spheres to Collect Unimaginable Energy From Black Holes

Posted by in categories: cosmology, engineering

Black holes are more than just massive objects that swallow everything around them – they’re also one of the universe’s biggest and most stable energy sources. That would make them invaluable to the type of civilization that needs huge amounts of power, such as a Type II Kardashev civilization. But to harness all of that power, the civilization would have to encircle the entire black hole with something that could capture the power it is emitting.

One potential solution would be a Dyson sphere – a type of stellar mega engineering project that encapsulates an entire star (or, in this case, a black hole) in an artificial sheath that captures all of the energy the object at its center emits. But even if it was able to capture all of the energy the black hole emits, the sphere itself would still suffer from heat loss. And that heat loss would make it visible to us, according to new research published by an international team led by researchers at the National Tsing Hua University in Taiwan.

Aug 28, 2021

We’re excited to announce that our flagship agriculture drone, the Agras T30, and the lightweight Agras T10, are now available in over 100 countries…

Posted by in categories: drones, food

Aug 28, 2021

This rocket would make the Saturn V look tiny 🚀

Posted by in category: space

Aug 28, 2021

This $10,000,000,000 telescope is scheduled to launch later this year!

Posted by in category: space

Aug 28, 2021

What NASA Saw at Jupiter In Its Riskiest Space Mission

Posted by in category: space

# nasa # space # Jupiter # Juno # astronomy.

Aug 28, 2021

A bipedal robot invented at Oregon State University ran 3.1 miles outdoors, completing the distance in just over 53 minutes and on a single charge

Posted by in category: robotics/AI

Aug 28, 2021

These cloned camels were created with cells from a ‘zoo’ of frozen specimens

Posted by in category: biotech/medical

The cell bank could one day be used to help preserve endangered species. https://cnn.it/3mzuSt4