Menu

Blog

Page 6206

Sep 12, 2021

Growth-Promoting, Anti-Aging Chemical Compound at the Root of Plant Growth and Animal Embryos

Posted by in categories: biotech/medical, chemistry, life extension

In humans, as well as all vertebrate animals, turning a fertilized egg into an embryo with a little beating heart requires that stem cells differentiate, specialize, and generate specific tissues, such as bones, blood vessels and a nervous system. This process is kickstarted and regulated by retinal. Animals can’t produce their own retinal, though, they must ingest it from plants, or from animals that eat plants.


Plant roots and animal embryos rely on the same chemical for successful development.

What do frog eggs have in common with anti-aging creams? Their success depends on a group of chemical compounds called retinoids, which are capable of generating and re-generating tissues.

Continue reading “Growth-Promoting, Anti-Aging Chemical Compound at the Root of Plant Growth and Animal Embryos” »

Sep 12, 2021

Tesla Successfully Patents Laser Windshield Wiper Idea

Posted by in categories: sustainability, transportation

When it comes to innovation in the auto industry, Tesla is seemingly always at the forefront. They popularized electric cars, shifting public view on them from a failed fad of the past to an essential way forward. Tesla also led the way when it came to autonomy; in late 2014 the addition of Hardware 1 to the Model S saw consumers experience levels of driver assistance previously never seen in a mass-produced car. And as Tesla grows in size they continue to invest in R & D, always looking at smarter and more efficient ways of doing things. Now it seems they have turned their attention towards windshield wipers.


Tesla has successfully patented an idea for laser windshield wipers which would remove debris from cars.

Sep 12, 2021

We aren’t using all of our tools to treat Covid-19

Posted by in categories: biotech/medical, government, health

More treatments are available for Covid-19 as hospitalizations spike, but some drugs are sitting on the shelves unused.

As record daily Covid-19 hospitalizations and deaths this month in the US have pushed the pandemic to new crisis levels, senior government health officials have lamented that many patients are not getting the drugs — including monoclonal antibodies, antivirals, and corticosteroids — available to treat the disease, leaving many doses unused.

“Even with a vaccine, we know we will not prevent every infection,” said US Surgeon General Jerome Adams on January 14 during a press conference. “So today we want to remind everyone that for those of you who do contract Covid, we have excellent treatments to keep you out of the hospital, to keep you out of the ICU, to help you recover quickly.”

Sep 12, 2021

Acousto-Optic Filter Uses Sound To Bend Light

Posted by in category: materials

We all know that light and sound are wave phenomena, but of very different kinds. Light is electromechanical in nature, while sound is mechanical. Light can travel through a vacuum, while sound needs some sort of medium to transmit it. So it would seem that it might be difficult to use sound to modify light, but with the right equipment, it’s actually pretty easy.

Easy, perhaps, if you’re used to slinging lasers around and terms like “acousto-optic tunable filter” fall trippingly from your tongue, as is the case for [Les Wright]. An AOTF is a device that takes a radio frequency input and applies it to a piezoelectric transducer that’s bonded to a crystal of tellurium oxide. The RF signal excites the transducer, which vibrates the TeO2 crystal and sets up a standing wave within it. The alternating bands of compressed and expanded material within the crystal act like a diffraction grating. Change the excitation frequency, and the filter’s frequency changes too.

Continue reading “Acousto-Optic Filter Uses Sound To Bend Light” »

Sep 12, 2021

Moderna working on combination COVID-19 vaccine booster and flu shot

Posted by in category: biotech/medical

Sept 9 (Reuters) — Moderna Inc (MRNA.O) said on Thursday it is developing a single vaccine that combines a booster dose against COVID-19 with its experimental flu shot.

The company hopes to eventually add vaccines it is working on for respiratory syncytial virus (RSV) and other respiratory diseases as an annual shot.

“We believe this is a very large opportunity that is ahead of us, if we could bring to market a high efficacy pan-respiratory annual booster,” Moderna Chief Executive Officer Stéphane Bancel said during a presentation to update investors on its drugs in development.

Sep 12, 2021

The Truth about Driving a Hydrogen Car

Posted by in categories: energy, physics, transportation

I drove 1,800 miles in a Hydrogen Fuel Cell Car! Thanks to Toyota for sponsoring this video and lending us the 2021 #Mirai.

Upcoming videos in this series:
Hydrogen vs. Battery Electric.
Grid Energy Storage.
Concentrated Solar.

Continue reading “The Truth about Driving a Hydrogen Car” »

Sep 12, 2021

New programmable gene editing proteins found outside of CRISPR systems

Posted by in categories: bioengineering, biotech/medical, genetics

Within the last decade, scientists have adapted CRISPR systems from microbes into gene editing technology, a precise and programmable system for modifying DNA. Now, scientists at MIT’s McGovern Institute and the Broad Institute of MIT and Harvard have discovered a new class of programmable DNA modifying systems called OMEGAs (Obligate Mobile Element Guided Activity), which may naturally be involved in shuffling small bits of DNA throughout bacterial genomes.

These ancient DNA-cutting enzymes are guided to their targets by small pieces of RNA. While they originated in bacteria, they have now been engineered to work in human cells, suggesting they could be useful in the development of gene editing therapies, particularly as they are small (~30% the size of Cas9), making them easier to deliver to cells than bulkier enzymes. The discovery, reported in the journal Science, provides evidence that natural RNA-guided enzymes are among the most abundant proteins on earth, pointing toward a vast new area of biology that is poised to drive the next revolution in genome editing technology.

The research was led by McGovern investigator Feng Zhang, who is James and Patricia Poitras Professor of Neuroscience at MIT, a Howard Hughes Medical Institute investigator, and a core institute member of the Broad Institute. Zhang’s team has been exploring natural diversity in search of new molecular systems that can be rationally programmed.

Sep 11, 2021

Mammals Carry a Graveyard of Viruses in Our DNA, And It Could Have a Crucial Purpose

Posted by in category: biotech/medical

Huge swaths of our DNA library are made up of non-coding genes that were long regarded as “junk DNA”. Recent findings, however, have shown these bits of DNA actually have many purposes in mammals.

Some help form the structure in our DNA molecules so they can be packaged neatly within our cell nuclei while others are involved in gene regulation. Now, researchers from the University of New South Wales in Australia have discovered another potential purpose for these non-coding instructions, within the genomes of marsupials.

Continue reading “Mammals Carry a Graveyard of Viruses in Our DNA, And It Could Have a Crucial Purpose” »

Sep 11, 2021

Job For Particle Accelerators May Be Possible on Tabletop

Posted by in categories: particle physics, quantum physics

Cold clouds of atoms—Bose-Einstein Condensates—will test quantum gravity, enable atom-scale lithography and prospect for minerals from afar.

Sep 11, 2021

Texas researchers develop new bioink specifically for 3D bioprinting blood vessels

Posted by in categories: 3D printing, bioprinting, biotech/medical, engineering

A team of researchers from Texas A&M University’s Department of Biomedical Engineering has designed and 3D bioprinted a highly realistic model of a blood vessel.

The model is made of a newly nanoengineered, purpose-built hydrogel bioink and closely mimics the natural vascular function of a real blood vessel, as well as its disease response. The team hopes its work can pave the way for advanced cardiovascular drug development, expediting treatment approval while eliminating the need for animal and human testing altogether.

“A remarkably unique characteristic of this nanoengineered bioink is that regardless of cell density, it demonstrates a high printability and ability to protect encapsulated cells against high shear forces in the bioprinting process,” said Akhilesh Gaharwar, associate professor at the university and co-author of the study. “Remarkably, 3D bioprinted cells maintain a healthy phenotype and remain viable for nearly one month post-fabrication.”