The BepiColombo spacecraft has its first high-speed encounter with the innermost planet of the Solar System.
European space probe zips past Mercury
Posted in space
Posted in space
The BepiColombo spacecraft has its first high-speed encounter with the innermost planet of the Solar System.
NASA marked a significant milestone Sept. 30 in its plans for future missions to the Moon and, eventually, Mars with completion of an RS-25 single-engine Retrofit-2 test series at Stennis Space Center near Bay St. Louis, Mississippi.
BepiColombo will complete its first of six Mercury flybys on October 1st. Some cameras will be operating so we’ll get some images. Some science, too.
BepiColombo will complete its first of six Mercury flybys on October 1st. Some cameras will be operating so we’ll get some images. Some science, too.
BepiColombo made a quick visit to Venus in August and is on to its next rendezvous. On October 1st it’ll perform a flyby of Mercury, the spacecraft’s eventual destination. This visit is just a little flirtation—one of six—ahead of its eventual orbital link-up with Mercury in late 2025.
The quick visit will yield some scientific results, though, and they’ll be just a taste of what’s ahead in BepiColumbo’s one-year mission to Mercury.
Summary: When people engage in complex thoughts, their brain networks organize into fractal-like patterns.
Source: Dartmouth College.
Understanding how the human brain produces complex thought is daunting given its intricacy and scale. The brain contains approximately 100 billion neurons that coordinate activity through 100 trillion connections, and those connections are organized into networks that are often similar from one person to the next.
Interesting.
Everybody knows sleep is important, but there’s still a lot we don’t understand about what it actually does to the brain – and how its benefits could be boosted. To investigate, the US Army has awarded researchers at Rice University and other institutions a grant to develop a portable skullcap that can monitor and adjust the flow of fluid through the brain during sleep.
Most of us are familiar with the brain fog that comes with not getting enough sleep, but the exact processes going on in there remain mysterious. In 2012 scientists made a huge breakthrough in the field by discovering the glymphatic system, which cleans out toxic waste products from the brain during deep sleep by flushing it with cerebrospinal fluid. Disruptions to sleep – and therefore the glymphatic system – have been increasingly associated with neurological disorders such as Alzheimer’s.
Studying the glymphatic system could provide new insights into sleep disorders and how to treat them, but currently it requires big bulky MRI machines. So the US Army is funding researchers at Rice University, Houston Methodist and Baylor College of Medicine to develop a wearable skullcap.
Spaceship with a VASIMR engine will deliver about 60 metric tons of cargo to Mars in about 90 days.
Memory and more
The new fiber was created by placing hundreds of square silicon microscale digital chips into a preform that was then used to create a polymer fiber. By precisely controlling the polymer flow, the researchers were able to create a fiber with continuous electrical connection between the chips over a length of tens of meters.
By half, it would soon ask health officials around the world to authorise its use ⤵️.
If authorised for use, it would be the first pill shown to treat COVID and a major step in controlling the pandemic.
On the northwest coast of Taiwan, nestled between mudflats teeming with fiddler crabs and sweet-scented persimmon orchards, sits the world’s most important company that you’ve probably never heard of. Taiwan Semiconductor Manufacturing Co., or TSMC, is the world’s largest contract manufacturer of the semiconductor chips—otherwise known as integrated circuits, or just chips—that power our phones, laptops, cars, watches, refrigerators and more. Its clients include Apple, Intel, Qualcomm, AMD and Nvidia.
Inside its boxy off-white headquarters in sleepy Hsinchu County, technicians in brightly hued protective suits—white and blue for employees, green for contractors and pink for pregnant women—push polished metal carts under a sallow protective light. Above their heads, “claw machines”—nicknamed after the classic arcade game—haul 9-kg plastic containers containing 25 individual slices, or “wafers,” of silicon on rails among hundreds of manufacturing stations, where they are extracted one by one for processing, much like a jukebox selecting a record. Only after six to eight weeks of painstaking etching and testing can each wafer be carved up into individual chips to be dispatched around the planet.
“We always say that it’s like building a high-rise,” one TSMC section manager tells TIME, pointing to how his technicians diligently follow instructions dictated to them via tablet. “You can only build one story at a time.”