Toggle light / dark theme

NASA recently evaluated initial flight data and imagery from Pathfinder Technology Demonstrator-4 (PTD-4), confirming proper checkout of the spacecraft’s systems including its on-board electronics as well as the payload’s support systems such as the small onboard camera. Shown above is a test image of Earth taken by the payload camera, shortly after PTD-4 reached orbit. This camera will continue photographing the technology demonstration during the mission.

Payload operations are now underway for the primary objective of the PTD-4 mission – the demonstration of a new power and communications technology for future spacecraft. The payload, a deployable solar array with an integrated antenna called the Lightweight Integrated Solar Array and anTenna, or LISA-T, has initiated deployment of its central boom structure. The boom supports four solar power and communication arrays, also called petals. Releasing the central boom pushes the still-stowed petals nearly three feet (one meter) away from the spacecraft bus. The mission team currently is working through an initial challenge to get LISA-T’s central boom to fully extend before unfolding the petals and beginning its power generation and communication operations.

Small spacecraft on deep space missions require more electrical power than what is currently offered by existing technology. The four-petal solar array of LISA-T is a thin-film solar array that offers lower mass, lower stowed volume, and three times more power per mass and volume allocation than current solar arrays. The in-orbit technology demonstration includes deployment, operation, and environmental survivability of the thin-film solar array.

Suspended in the relic of an ancient sea beneath southern Arkansas, there may be enough lithium for nine times the expected global demand for the element in car batteries in 2030.

\t\t\t\t\t\t\t\t\t\t\t.

A collaborative national and state government research team trained a machine learning model to predict and map the lithium concentrations of salty water deep within the porous limestone aquifer beneath southern Arkansas, known as the Smackover Formation brines.

Easter Island consists of several extinct volcanoes. The oldest lava deposits formed some 2.5 million years ago on top of an oceanic plate not much older than the volcanoes themselves. In 2019, a team of Cuban and Colombian geologists left for Easter Island to accurately date the volcanic island. To do so, they resorted to a tried-and-tested recipe: dating zircon minerals. When magma cools, these minerals crystallize. They contain a bit of uranium, which ‘turns’ into lead through radioactive decay.

Because we know how fast that process happens, we can measure how long ago those minerals formed. The team from Colombia’s Universidad de Los Andes, led by Cuban geologist Yamirka Rojas-Agramonte, therefore went in search of those minerals. Rojas-Agramonte, now at the Christian Albrechts-University Kiel, found hundreds of them. But surprisingly, not only from 2.5 million years old, but also from much further back in time, up to 165 million years ago. How could that be?

Comet’s distance from the sun: 75 million miles (121 million kilometers)

Comet’s distance from Earth: 71 million miles (115 million kilometers)

So far, the guiding lights to find the comet have been the bright planet Venus and the bright red star Arcturus. However, as October draws to a close, both are so close to the horizon an hour after sunset that they’re unlikely to be visible. So, instead, use the stars of the Summer Triangle to find the comet. Vega in the constellation Lyra should be easy enough to find above due west and, above it, Deneb in Cygnus.

Inspired by the half-human, half-horse creatures that are part of Ancient Greek mythology, the field of astronomy has its own kind of centaurs: distant objects orbiting the sun between Jupiter and Neptune. NASA’s James Webb Space Telescope has mapped the gases spewing from one of these objects, suggesting a varied composition and providing new insights into the formation and evolution of the solar system.

Centaurs are former trans-Neptunian objects that have been moved inside Neptune’s orbit by subtle gravitational influences of the planets in the last few million years, and may eventually become short-period comets. They are “hybrid” in the sense that they are in a transitional stage of their orbital evolution: Many share characteristics with both trans-Neptunian objects (from the cold Kuiper Belt reservoir), and short-period comets, which are objects highly altered by repeated close passages around the sun.

Since these small icy bodies are in an orbital transitional phase, they have been the subject of various studies as scientists seek to understand their composition, the reasons behind their outgassing activity—the loss of their ices that lie underneath the surface—and how they serve as a link between primordial icy bodies in the outer solar system and evolved comets.

Researchers at McGill University have made a significant advance in the development of all-solid-state lithium batteries, which are being pursued as the next step in electric vehicle (EV) battery technology.

By addressing a long-standing issue with battery performance, this innovation could pave the way for safer, longer-lasting EVs. The findings are published in the journal Cell Reports Physical Science.

The challenge lies in the resistance that occurs where the ceramic electrolyte meets the electrodes. This makes the battery less efficient and reduces how much energy it can deliver. The research team has discovered that creating a porous ceramic membrane, instead of the traditional dense plate, and filling it with a small amount of polymer can resolve this issue.