Toggle light / dark theme

Cost-slashing innovations are underway in the electric power sector and could give electricity the lead over fossil-based combustion fuels in the world’s energy supply by mid-century. When combined with a global carbon price, these developments can catalyze emission reductions to reach the Paris climate targets, while reducing the need for controversial negative emissions, a new study finds.

“Today, 80 percent of all energy demands for industry, mobility or heating buildings is met by burning—mostly fossil—fuels directly, and only 20 percent by electricity. Our research finds that relation can be pretty much reversed by 2050, making the easy-to-decarbonise electricity the mainstay of global energy supply,” says Gunnar Luderer, author of the new study and researcher the Potsdam Institute for Climate Impact Research. “For the longest time, fossil fuels were cheap and accessible, whilst electricity was the precious and pricier source of energy. Renewable electricity generation—especially from solar photovoltaics—has become cheaper at breath-taking speed, a pace that most climate models have so far underestimated. Over the last decade alone prices for solar electricity fell by 80 percent, and further cost reductions are expected in the future. This development has the potential to fundamentally revolutionize energy systems.

In the future, soft robotic hands with advanced sensors could help diagnose and care for patients or act as more lifelike prostheses.

But one roadblock to encoding soft robotic hands with human-like sensing capabilities and dexterity has been the stretchability of sensors. Although pressure sensors—needed for a robotic hand to grasp and pick up an object, or even take a pulse from a wrist—have been able to bend or stretch, their performance has been significantly affected by such movement.

Researchers at the Pritzker School of Molecular Engineering (PME) at the University of Chicago have found a way to address this issue and have designed a new pressure sensor that can be stretched up to 50 percent while maintaining almost the same sensing performance. It is also sensitive enough to sense the pressure of a small piece of paper, and it can respond to pressures almost instantaneously.

To address the growing threat of cyberattacks on industrial control systems, a KAUST team including Fouzi Harrou, Wu Wang and led by Ying Sun has developed an improved method for detecting malicious intrusions.

Internet-based are widely used to monitor and operate factories and critical infrastructure. In the past, these systems relied on expensive dedicated networks; however, moving them online has made them cheaper and easier to access. But it has also made them more vulnerable to attack, a danger that is growing alongside the increasing adoption of internet of things (IoT) technology.

Conventional security solutions such as firewalls and are not appropriate for protecting industrial control systems because of their distinct specifications. Their sheer complexity also makes it hard for even the best algorithms to pick out abnormal occurrences that might spell invasion.

Artificial intelligence has reached a point where it can compose text that sounds so human that it dupes most people into thinking it was written by another person. These AI programs—based on what are called autoregressive models—are being successfully used to create and deliberately spread everything from fake political news to AI-written blog posts that seem authentic to the average person and are published under human-sounding byline.

However, though autoregressive models can successfully fool most humans, their capabilities are always going to be limited, according to research by Chu-Cheng Lin, a Ph.D. candidate in the Whiting School of Engineering’s Department of Computer Science.

“Our work reveals that some desired qualities of intelligence—for example, the ability to form consistent arguments without errors—will never emerge with any reasonably sized, reasonably fast autoregressive model,” said Lin, a member of the Center for Language and Speech Processing.

Walmart has launched an instant drone delivery system for customers living within a 50-mile radius of its headquarters in northern Arkansas.

The retail giant has partnered with drone company Zipline to launch the new system that will offer on-demand delivery for health and wellness and consumable items within 50 miles of the Walmart Neighborhood Market in Pea Ridge, according to a press release.

“It’s unbelievably exciting, we’ve been working towards this day for many many years,” Zipline’s CEO Liam O’Connor told CBS News.

Just as a voltage difference can generate electric current, a temperature difference can generate a current flow in thermoelectric materials governed by its “Peltier conductivity” ℗. Now, researchers from Japan demonstrate an unprecedented large P in a single crystal of Ta2PdSe6 that is 200 times larger than the maximum P commercially available, opening doors to new research avenues and revolutionizing modern electronics.

We know that current flows inside a metallic conductor in presence of a voltage difference across its ends. However, this is not the only way to generate current. In fact, a difference could work as well. This phenomenon, called “Seebeck effect,” laid the foundation of the field of thermoelectrics, which deals with materials producing electricity under the application of a temperature difference.

Similar to the concept of an electrical conductivity, thermoelectricity is governed by the Peltier conductivity, P, which relates the thermoelectric current to the temperature gradient. However, unlike its electrical counterpart, P is less explored and understood. For instance, is there a theoretical upper limit to how large P can be? Far from being a mere curiosity, the possibility of a large P could be a game changer for modern-day electronics.