Toggle light / dark theme

Asymmetric interactions between molecules may serve as a stabilizing factor for biological systems. A new model by researchers in the Department of Living Matter Physics at the Max Planck Institute for Dynamics and Self-Organization (MPI-DS) reveals the regulatory role of non-reciprocity.

The scientists aim to understand the physical principles based on which particles and molecules are able to form living beings, and eventually, organisms. The work is published in the journal Physical Review Letters.

Most organizations, including companies, societies, or nations, function best when each member carries out their assigned role. Moreover, this efficiency often relies on spatial organization, which arose due to rules or emerged naturally via learning and . At the , cells operate in a similar way, with different components handling .

In this enlightening episode, we delve into groundbreaking research that challenges our understanding of the brain’s building blocks. Recent studies reveal that a single neuron possesses computational capabilities rivaling those of entire artificial neural networks, suggesting that each neuron may function as a complex processor in its own right.

This UPSC Podcast explores how learning in the brain is more complex than previously thought, revealing that synapses, the connections between neurons, don’t all follow the same rules. A recent study observed these tiny junctions in mice, discovering that their behavior depends on their location on a neuron’s branches called dendrites. Some synapses prioritize local connections, while others form longer circuits, indicating that different parts of a single neuron perform distinct computations, potentially explaining how the brain forms memories, including during processes like offline learning. This research offers a new perspective on how the brain encodes information and could potentially inspire more sophisticated AI methods.

Key Discussion Points:

Neuronal Complexity: Exploring how individual neurons can perform intricate computations, akin to multi-layered neural networks.
Quanta Magazine.

Dendritic Processing: Understanding the role of dendrites in enhancing a neuron’s computational power.
Quanta Magazine.

Implications for AI: Discussing how these findings could revolutionize artificial intelligence by inspiring more efficient neural network architectures.

Lafourcade et al. reveal that apical oblique dendrites of retrosplenial cortical L5 neurons exhibit unexpectedly linear integration compared with basal and tuft branches via increased synaptic AMPA: NMDA. Long-range inputs are targeted to these distinct dendritic domains, supporting the idea that single neurons perform a diverse range of subcellular processing.

Researchers at Purdue University have developed an “ultra-white” paint that reflects 98 per cent of sunlight and deflects infrared heat, allowing buildings to cool below the surrounding air temperature.

The paint, which the university describes as the “whitest paint on record”, owes its cooling power to barium sulphate – a pigment derived from the mineral barite – and reflects up to 98.1% of sunlight.

Unlike the titanium dioxide used in traditional white paints, which absorbs UV light, the barium sulphate is also capable of deflecting infrared heat away from the surface to which it is applied.

Somewhere in the body of a patient, a small clump of cells, growing undetected, has begun to form a tumor. It has yet to cause pain or visible symptoms of illness. Several months from now, or perhaps years, those first signs will prompt a doctor’s inquiry, a referral to a specialist, and an eventual diagnosis. Treatment will depend on how long the cancer has gone unnoticed and how far it has spread.

There were early signs, though not ones the patient or doctor could have noticed. Small fragments of RNA, cast off from dying cells or spit out of the tumor’s twisted transcriptions, floating about in the bloodstream—early signals of a tissue in distress.

A new method developed by Stanford researchers aims to bring the moment of detection much closer to the beginning. They have developed a blood-based method called RARE-seq that detects tumor-derived cell-free RNA with around 50 times the sensitivity of standard sequencing techniques.