Toggle light / dark theme

The Turing Award recipient told ET that the path to achieving AGI (artificial general intelligence) is through AI systems being conscious of the physical world, having persistent memory and being able to reason. This may take 6–10 years and still have the intelligence of a cat, he said on the sidelines of Meta’s Build with AI Summit in Bengaluru.

“I don’t like the phrase AGI. I prefer human-level intelligence because human intelligence is not general. Internally, we call this AMI-advanced machine intelligence. We have a pretty good plan on how to get there,” said LeCun is often referred to as a ‘Godfather of AI’

Researchers have identified a key mechanism in the development of Alzheimer’s disease involving the growth and pause of amyloid β fibrils.

A newly discovered antibody can lock these fibrils in their paused state, offering a potential new approach for treatment that targets these critical growth points.

Breakthrough in Alzheimer’s Research.

In a remarkable encounter off the coast of Alaska, human scientists had what they describe as a “conversation” with a humpback whale named Twain. Dr. Brenda McCowan from the University of California Davis was at the heart of this unexpected exchange.

Dr. McCowan and her team, known as Whale-SETI, have been studying how humpback whales communicate. They’re aiming to understand whale communication systems to help in the search for life beyond Earth.

Using an underwater speaker, the team played a recorded humpback “contact” call into the ocean. To their astonishment, Twain approached their boat and began responding.

Nuclear fission—when the nucleus of an atom splits in two, releasing energy—may seem like a process that is fully understood. First discovered in 1939 and thoroughly studied ever since, fission is a constant factor in modern life, used in everything from nuclear medicine to power-generating nuclear reactors. However, it is a force of nature that still contains mysteries yet to be solved.

Researchers from the University of Washington, Seattle, or UW, and Los Alamos National Laboratory have used the Summit supercomputer at the Department of Energy’s Oak Ridge National Laboratory to answer one of fission’s biggest questions: What exactly happens during the nucleus’s “neck rupture” as it splits in two?

The resulting paper is published in the journal Physical Review Letters.

Researchers Takuma Nakamura, Kazuki Hashimoto, and Takuro Ideguchi of the Institute for Photon Science and Technology at the University of Tokyo have increased by 100-fold the measurement rate of Raman spectroscopy, a common technique for measuring the “vibrational fingerprint” of molecules in order to identify them.

As the measurement rate has been a major limiting factor, this improvement contributes to advancements in many fields that rely on identifying molecules and cells, such as biomedical diagnostics and material analytics. The findings were published in the journal Ultrafast Science.

Identifying various types of molecules and cells is a crucial step in both basic and applied science. Raman spectroscopy is a widely used measurement technique for this purpose. When a is projected onto molecules, the light interacts with the vibrations and rotations of molecular bonds, shifting the frequency of the scattering light. The scattering spectra thus measured is a molecule’s unique “vibrational fingerprint.”