Toggle light / dark theme

A team of researchers from Harvard University and Brigham and Women’s Hospital, Harvard Medical School, has developed a type of living ink that can be used to print living materials. In their paper published in the journal Nature Communications, the group describes how they made their ink and possible uses for it.

For several years, microbial engineers have been working to develop a means to create living materials for use in a wide variety of applications such as medical devices. But getting such materials to conform to desired 3D structures has proven to be a daunting task. In this new effort, the researchers have taken a new approach to tackling the problem—engineering Escherichia coli to produce a product that can be used as the basis for an ink for use in a 3D printer.

The work began by bioengineering the bacteria to produce living nanofibers. The researchers then bundled the fibers and added other ingredients to produce a type of living ink that could be used in a conventional 3D printer. Once they found the concept viable, the team bioengineered other microbes to produce other types of living fibers or materials and added them to the ink. They then used the ink to print 3D objects that had living components. One was a material that secreted azurin—an anticancer drug—when stimulated by certain chemicals. Another was a material that sequestered Bisphenol A (a toxin that has found its way into the environment) without assistance from other chemicals or devices.

Researchers at Trinity College Dublin and University of Bath have recently developed a model based on deep neural networks that could help to improve the quality of animations containing quadruped animals, such as dogs. The framework they created was presented at the MIG (Motion, Interaction & Games) 2021 conference, an event where researchers present some of the latest technologies for producing high-quality animations and videogames.

“We were interested in working with non-human data,” Donal Egan, one of the researchers who carried out the study, told TechXplore. “We chose for practicality reasons, as they are probably the easiest animal to obtain data for.”

Creating good quality animations of dogs and other animals is a challenging task. This is mainly because these animals move in complex ways and have unique gaits with specific footfall patterns. Egan and his colleagues wanted to create a framework that could simplify the creation of quadruped animations, producing more convincing content for both animated videos and videogames.

Back in April, it was reported that Akon planned to build a futuristic “Akon City” in Uganda. Along with Akon City, Akon launched AKOIN, his very own cryptocurrency.

According to the AKOIN website, which includes Akon City details and explains how it fits into the “I’m So Paid” singer’s efforts to bring resources and technological opportunities to Africa, AKOIN is “a cryptocurrency powered by a blockchain based eco-system of tools and services designed for entrepreneurs in the rising economies of Africa.”

Solid-solution organic crystals have been brought into the quest for superior photon upconversion materials, which transform presently wasted long-wavelength light into more useful shorter wavelength light. Scientists from Tokyo Institute of Technology have revisited a materials approach previously deemed lackluster—using a molecule originally developed for organic LEDs—and have achieved outstanding performance and efficiency. Their findings pave the way for many novel photonic technologies, such as better solar cells and photocatalysts for hydrogen and hydrocarbon productions.

Light is a powerful source of energy that can, if leveraged correctly, be used to drive stubborn chemical reactions, generate electricity, and run optoelectronic devices. However, in most applications, not all the wavelengths of can be used. This is because the energy that each photon carries is inversely proportional to its wavelength, and chemical and are triggered by light only when the energy provided by individual photons exceeds a certain threshold.

This means that devices like solar cells cannot benefit from all the color contained in sunlight, as it comprises a mixture of photons with both high and low energies. Scientists worldwide are actively exploring materials to realize upconversion (PUC), by which photons with lower energies (longer wavelengths) are captured and re-emitted as photons with higher energies (shorter wavelengths). One promising way to realize this is through triplet-triplet annihilation (TTA). This process requires the combination of a sensitizer material and an annihilator material. The sensitizer absorbs low energy photons (long-wavelength light) and transfers its excited energy to the annihilator, which emits higher photons (light of shorter wavelength) as a result of TTA.

The chance that ESA’s Solar Orbiter spacecraft will encounter space debris during its upcoming Earth flyby is very, very low. However, the risk is not zero and is greater than any other flyby ESA has performed. That there is this risk at all highlights the mess we’ve made of space – and why we need to take action to clean up after ourselves.

On November 27, after a year and eight months flying through the inner Solar System, Solar Orbiter will swing by home to ‘drop off’ some extra energy. This will line the spacecraft up for its next six flybys of Venus.

Venus, the second planet from the sun, is named after the Roman goddess of love and beauty. After the moon, it is the second-brightest natural object in the night sky. Its rotation (243 Earth days) takes longer than its orbit of the Sun (224.7 Earth days). It is sometimes called Earth’s “sister planet” because of their similar composition, size, mass, and proximity to the Sun. It has no natural satellites.

A group of researchers has outlined a surprisingly simple method for recreating the conditions near a neutron star, a breakthrough that could lead to new unimagined scientific discoveries revolving around the mysterious role of antimatter, a report from New Atlas explains.

The team of physicists designed a device, detailed in a paper in the journal Communications Physics, that fires two lasers at each other. The result is that the energy from the two lasers is simultaneously converted into matter, in the form of electrons, as well as antimatter, in the form of positrons.