Through his encyclopedic study of the electron, an obscure figure named Stefano Laporta found a handle on the subatomic world’s fearsome complexity. His algorithm has swept the field.
Terraforming Mars is one of the great dreams of humanity. Mars has a lot going for it. Its day is about the same length as Earth’s, it has plenty of frozen water just under its surface, and it likely could be given a reasonably breathable atmosphere in time. But one of the things it lacks is a strong magnetic field. So if we want to make Mars a second Earth, we’ll have to give it an artificial one.
The reason magnetic fields are so important is that they can shield a planet from solar wind and ionizing particles. Earth’s magnetic field prevents most high-energy charged particles from reaching the surface. Instead, they are deflected from Earth, keeping us safe. The magnetic field also helps prevent solar winds from stripping Earth’s atmosphere over time. Early Mars had a thick, water-rich atmosphere, but it was gradually depleted without the protection of a strong magnetic field.
Unfortunately, we can’t just recreate Earth’s magnetic field on Mars. Our field is generated by a dynamo effect in Earth’s core, where the convection of iron alloys generates Earth’s geomagnetic field. The interior of Mars is smaller and cooler, and we can’t simply “start it up” to create a magnetic dynamo. But there are a few ways we can create an artificial magnetic field, as a recent study shows.
Inspiration. Creativity. Wonder
Posted in space
Learn More.
Bright Side.
Something bizarre found on the Moon has scientists speechless.
Find out how much good is going on in the world.
Superconductivity occurs when electrons in a metal pair up and move through the material without resistance. But there may be more to the story than we thought, as scientists in Germany have now discovered that electrons can also group together into families of four, creating a new state of matter and, potentially, a new type of superconductivity.
Conductivity is a measure of how easily electrons (and therefore electricity) can move through a material. But even in materials that make good conductors, like gold, electrons will still encounter some resistance. Superconductors, however, remove all such barriers and provide zero resistance at ultracold temperatures.
The reason electrons can move through superconductors so easily is because they pair up through a quantum effect known as Cooper pairing. In doing so, they raise the minimum amount of energy it takes to interfere with the electrons – and if the material is cold enough, its atoms won’t have enough thermal energy to disturb these Cooper pairs, allowing the electrons to flow freely with no loss of energy.
Using a focused laser beam, scientists can manipulate properties of nanomaterials, thus ‘writing’ information onto monolayer materials. By this means, the thinnest light disk at atomic level was demonstrated.
The bottleneck in atomic-scale data storage area may be broken by a simple technique, thanks to recent innovative studies conducted by scientists from Nanjing Normal University (NJNU) and Southeast University (SEU).
Through a simple, efficient and low-cost technique involving the focused laser beam and ozone treatment, the NJNU and SEU research teams, leading by Prof. Hongwei Liu, Prof. Junpeng Lu and Prof. Zhenhua Ni demonstrated that the photoluminescence (PL) emission of WS2 monolayers can be controlled and modified, and consequently, it works as the thinnest light disk with rewritable data storage and encryption capability.
Circa 2020
Glass could play an important role in the world’s first petabyte hard disk drive as an answer to the growing demand for better data storage capacity.
Want AI that can do 10 trillion operations using just one watt? Do the math using analog circuits instead of digital.
There’s no argument in the astronomical community—rocket-propelled spacecraft can take us only so far. The SLS will likely take us to Mars, and future rockets might be able to help us reach even more distant points in the solar system. But Voyager 1 only just left the solar system, and it was launched in 1977. The problem is clear: we cannot reach other stars with rocket fuel. We need something new.
“We will never reach even the nearest stars with our current propulsion technology in even 10 millennium,” writes Physics Professor Philip Lubin of the University of California Santa Barbara in a research paper titled A Roadmap to Interstellar Flight. “We have to radically rethink our strategy or give up our dreams of reaching the stars, or wait for technology that does not exist.”
Lubin received funding from NASA last year to study the possibility of using photonic laser thrust, a technology that does exist, as a new system to propel spacecraft to relativistic speeds, allowing them to travel farther than ever before. The project is called DEEP IN, or Directed Propulsion for Interstellar Exploration, and the technology could send a 100-kg (220-pound) probe to Mars in just three days, if research models are correct. A much heavier, crewed spacecraft could reach the red planet in a month—about a fifth of the time predicted for the SLS.
In a recent news release 0, the company, not to be mistaken for the car company owned by BMW, claimed that the Spirit of Innovation set three new world records earlier this week. On flight tests carried out on Nov. 16, Rolls-Royce said its aircraft reached a top speed of 345.4 mph (555.9 km/h) over 1.8 miles (3 kilometers), exceeding the current record by 132 mph (213 k/h). It broke another record in a subsequent 9.3-mile (15 kilometer) flight, during which it reached 330 mph (532.1 km/h), surpassing the current record by 182 mph (292.8 km/h).
The Spirit of Innovation didn’t stop there, though. Rolls-Royce affirms that it smashed another record when it reached 9,842.5 feet (3,000 meters) in 202 seconds, beating the current record by 60 seconds. In the company’s view, it also took the title of the world’s fastest all-electric vehicle when it reached a maximum speed of 387.4 mph (623 km/h) during its flight tests.
The company’s aircraft is powered by a 400kW electric powertrain and “the most power-dense propulsion battery pack ever assembled in aerospace.” It’s part of the Accelerating the Electrification of Flight project 0, which receives half of its funding from the UK government and the Aerospace Technology Institute.
✅ Instagram: https://www.instagram.com/pro_robots.
You’re on the PRO Robots channel and in this episode we’re going to talk about a vacation in space. When will this cherished dream come true? How will such a trip take place, what will the preparation consist of, how much does a trip and service in space cost, what will be the food for the space tourists and what are the living conditions and dangers awaiting them — watch this video! Watch this episode to the end and write in the comments: would you dare to go on a space vacation?
0:00 In this video.
0:25 Our Everything.
1:19 Space Perspective.
1:52 SpaceX
3:17 Roscosmos and Space Adventures.
3:46 Orbital Assembly Corporation.
5:00 Astronaut Menu.
5:46 weightlessness and the human body.
6:37 Rest on the Moon.
#prorobots #robots #robot #future technologies #robotics.