Toggle light / dark theme

Cyberattacks can snare workflows, put vulnerable client information at risk, and cost corporations and governments millions of dollars. A botnet—a network infected by malware—can be particularly catastrophic. A new Georgia Tech tool automates the malware removal process, saving engineers hours of work and companies money.

The tool, ECHO, turns malware against itself by exploiting its built-in update mechanisms and preventing botnets from rebuilding. ECHO is 75% effective at removing botnets. Removing malware used to take days or weeks to fix, but can now be resolved in a few minutes. Once a security team realizes their system is compromised, they can now deploy ECHO, which works fast enough to prevent the from taking down an entire network.

“Understanding the behavior of the malware is usually very hard with little reward for the engineer, so we’ve made an automatic solution,” said Runze Zhang, a Ph.D. student in the School of Cybersecurity and Privacy (SCP) and the School of Electrical and Computer Engineering.

The system, designed to enhance protection for critical infrastructures, has proven its ability to withstand the immense force of lightning strikes while maintaining stable flight.

Many modern industrial processes depend on complex chemistry. Take fertilizer production, for example: to make it, companies must first produce ammonia, a key ingredient.

These need ingredients of their own—catalysts, which speed up reactions without being consumed or creating unwanted byproducts.

One emerging type of catalyst—known as a “single-atom” or “atomically dispersed” catalyst—is getting a lot of attention for its potential to make industrial processes cleaner and more efficient. Academic journals are overflowing with studies on them.