Toggle light / dark theme

Extraterrestrial landers sent to gather samples from the surface of distant moons and planets have limited time and battery power to complete their mission. Aerospace and computer science engineering researchers at The Grainger College of Engineering, University of Illinois Urbana-Champaign trained a model to autonomously assess and scoop quickly, then watched it demonstrate its skill on a robot at a NASA facility.

Aerospace Ph.D. student Pranay Thangeda said they trained their robotic lander arm to collect scooping data on a variety of materials, from sand to rocks, resulting in a database of 6,700 points of knowledge. The two terrains in NASA’s Ocean World Lander Autonomy Testbed at the Jet Propulsion Laboratory were brand new to the model that operated the JPL robotic arm remotely.

The study, “Learning and Autonomy for Extraterrestrial Terrain Sampling: An Experience Report from OWLAT Deployment,” was published in the AIAA Scitech Forum.

“The standardization of water-based propulsion is in fact a fundamental step forward to make space technologies more accessible and sustainable, also paving the way for other possible applications,” the researchers concluded.

Several developments have taken place to enhance the efficiency of space propulsion technologies. Recently, scientists tested reflective sails that use the pressure from lasers or starlight to propel spacecraft.

Besides, scientists are also investigating the concept of antimatter rocket propulsion technology to make deep space exploration viable.

Precisely controlling sparks allows for their use in a wide variety of applications.


For the first time, scientists have found that electric sparks can be guided using ultrasonic waves. A recent study by researchers from Spain, Finland, and Canada uncovered the way in which ultrasonic waves transport electricity through air.

Researchers revealed that this guidance occurs because the sparks heat up the air, which expands and lowers its density.

The hot air is then guided by ultrasonic waves into regions where the sound intensity is higher, and the next sparks follow these regions of lighter air because of its lower breakdown voltage, according to researchers.

Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD

Discount Links/Affiliates:
Blood testing (where I get the majority of my labs): https://www.ultalabtests.com/partners/michaellustgarten.

At-Home Metabolomics: https://www.iollo.com?ref=michael-lustgarten.
Use Code: CONQUERAGING At Checkout.

Clearly Filtered Water Filter: https://get.aspr.app/SHoPY

Researchers recently discovered that eight different psychiatric conditions share a common genetic basis.

A new study has now honed in on some of those shared genetic variants to understand their properties. They found many are active for longer during brain development and potentially impact multiple stages, suggesting they could be new targets to treat multiple conditions.

“The proteins produced by these genes are also highly connected to other proteins,” explains University of North Carolina geneticist Hyejung Won. “Changes to these proteins in particular could ripple through the network, potentially causing widespread effects on the brain.”