Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

AI-powered CRISPR could lead to faster gene therapies

Stanford Medicine researchers have developed an artificial intelligence tool to help scientists better plan gene-editing experiments. The technology, CRISPR-GPT, acts as a gene-editing “copilot” supported by AI to help researchers—even those unfamiliar with gene editing—generate designs, analyze data and troubleshoot design flaws.

The model builds on a tool called CRISPR, a powerful gene-editing technology used to edit genomes and develop therapies for . But training on the tool to design an experiment is complicated and time-consuming—even for seasoned scientists. CRISPR-GPT speeds that process along, automating much of the experimental design and refinement. The goal, said Le Cong, Ph.D., assistant professor of pathology and genetics, who led the technology’s development, is to help scientists produce lifesaving drugs faster.

The paper is published in the journal Nature Biomedical Engineering.

Patients in least developed countries three times more likely to die after abdominal trauma surgery, study reveals

Mortality after emergency abdominal surgery is more than three times higher in the least developed countries compared to the most developed. Yet among those who undergo surgery, injuries tend to be less severe—raising concerns that those most critically injured are not even reaching the operating theater.

A study published in The Lancet Global Health has revealed stark global inequalities in survival after emergency for traumatic injuries. The research found that patients in the world’s least developed countries face a substantially higher risk of dying within 30 days of surgery than those in the most developed nations, as ranked by the United Nations Human Development Index (HDI).

Although overall mortality rates appeared similar across settings at 11%, risk-adjusted analysis showed that patients in the lowest-HDI countries faced more than three times the risk of death compared with those in the highest-HDI group, while the risk in middle-HDI countries was nearly double.

Entanglement of photonic modes from a continuously driven two-level system

The ability to generate entangled states of light is a key primitive for quantum communication and distributed quantum computation. Continuously driven sources, including those based on spontaneous parametric downconversion, are usually probabilistic, whereas deterministic sources require accurate timing of the control fields. Here, we experimentally generate entangled photonic modes by continuously exciting a quantum emitter — a superconducting qubit — with a coherent drive, taking advantage of mode matching in the time and frequency domain. Using joint quantum state tomography and logarithmic negativity, we show that entanglement is generated between modes extracted from the two sidebands of the resonance fluorescence spectrum. Because the entangled photonic modes are perfectly orthogonal, they can be transferred into distinct quantum memories. Our approach can be utilized to distribute entanglement at a high rate in various physical platforms, with applications in waveguide quantum electrodynamics, distributed quantum computing, and quantum networks.


Yang, J., Strandberg, I., Vivas-Viaña, A. et al. Entanglement of photonic modes from a continuously driven two-level system. npj Quantum Inf 11, 69 (2025). https://doi.org/10.1038/s41534-025-00995-1

Download citation.

Nanobiotechnology Unveils the Power of Probiotics: A Comprehensive Review on the Synergistic Role of Probiotics and Advanced Nanotechnology in Enhancing Geriatric Health

The geriatric population, comprising ages 65 and above, encounters distinct health obstacles because of physiological changes and heightened vulnerability to diseases. New technologies are being investigated to tackle the intricate health requirements of this population. Recent advancements in probiotics and nanotechnology offer promising strategies to enhance geriatric health by improving nutrient absorption, modulating gut microbiota, and delivering targeted therapeutic agents. Probiotics play a crucial role in maintaining gut homeostasis, reducing inflammation, and supporting metabolic functions. However, challenges such as limited viability and efficacy in harsh gastrointestinal conditions hinder their therapeutic potential. Advanced nanotechnology can overcome these constraints by enhancing the efficacy of probiotics through nano-encapsulation, controlled delivery, and improvement of bioavailability. This review explores the synergistic potential of probiotics and advanced nanotechnology in addressing age-related health concerns. It highlights key developments in probiotic formulations, nano-based delivery systems, and their combined impact on gut health, immunity, and neuroprotection. The convergence of probiotics and nanotechnology represents a novel and transformative approach to promoting healthy aging, paving the way for innovative therapeutic interventions.

Building capacity to beat cancer with a targeted radiopharmaceutical

The suite of powerful particle accelerators at RIKEN has a long history of dual-purpose use. As well as the central role these instruments play in fundamental nuclear physics research, they have also long been employed in the production of valuable radioisotopes.

Today, some of the strongest radioisotope demand comes from medicine, where they are used in imaging and increasingly, as cancer treatments. Currently, there is a rapidly growing interest in astatine-211, a promising radioisotope for the potential selective treatment of numerous cancers.

Fortunately, innovative new methods for producing astatine-211 in practical amounts have recently been pioneered at our facility. And, a recently launched human clinical trial at Osaka University Hospital of an astatine-211 based anticancer radiopharmaceutical, a first for Japan, is leveraging these new production abilities. (Circa 2024)


RIKEN’s particle accelerator facilities are producing astatine-211, a radioisotope with great promise for selective anti-tumor therapies, says Hiromitsu Haba.

/* */