Toggle light / dark theme

Strategy accelerates the best algorithmic solvers for large sets of cities.

Waiting for a holiday package to be delivered? There’s a tricky math problem that needs to be solved before the delivery truck pulls up to your door, and MIT researchers have a strategy that could speed up the solution.

The approach applies to vehicle routing problems such as last-mile delivery, where the goal is to deliver goods from a central depot to multiple cities while keeping travel costs down. While there are algorithms designed to solve this problem for a few hundred cities, these solutions become too slow when applied to a larger set of cities.

The solver algorithms work by breaking up the problem of delivery into smaller subproblems to solve — say, 200 subproblems for routing vehicles between 2,000 cities. Wu and her colleagues augment this process with a new machine-learning algorithm that identifies the most useful subproblems to solve, instead of solving all the subproblems, to increase the quality of the solution while using orders of magnitude less compute.

Their approach, which they call “learning-to-delegate,” can be used across a variety of solvers and a variety of similar problems, including scheduling and pathfinding for warehouse robots, the researchers say.

The possibility of space mining in future was thrown into sharp relief this weekend as a Near Earth Asteroid (NEA) called 4,660 Nereus passed our planet.

Worth an estimated $5 billion in precious metals and measuring 330 meters across, Nereus at no point came anywhere near being dangerous, getting no closer than 2.4 million miles/3.9 million kilometers at 13:51 UTC on Saturday, December 11, 2021.

That’s about 10 times the distance between the Earth and the Moon.

So why so much attention on Nereus?

There seemed to be a lot of misunderstanding about how dangerous—or otherwise—Nereus could be to Earth.

The predicted existence of an exotic particle made up of six elementary particles known as quarks by RIKEN researchers could deepen our understanding of how quarks combine to form the nuclei of atoms.

Quarks are the fundamental building blocks of matter. The nuclei of atoms consist of protons and neutrons, which are in turn made up of three quarks each. Particles consisting of three quarks are collectively known as baryons.

Scientists have long pondered the existence of systems containing two baryons, which are known as dibaryons. Only one dibaryon exists in nature—deuteron, a hydrogen nucleus made up of a proton and a neutron that are very lightly bound to each other. Glimpses of other dibaryons have been caught in nuclear-physics experiments, but they had very fleeting existences.

🤔

I would prefer it if the data was anonymized and handed back to the patient via an AI interface on the assessment, — Recommended actions and risks involved with each decision. It would then be up to the patient to share the data with a doctor or not, to decide how much data they want to share, and to what extent recommendations can interfere with their day to day life. I’m gonna have a glass of wine. AI: this is your 3rd glass today, do you want to know the risks associated with this decision? No. AI: ok-do you want to monitor vital health statistics in relation to drinking wine instead of water? No. AI; Do you want / Just shut up. Erase all records of my wine drinking and do not monitor this going forward. To live means to die, at least for now. Don’t touch my wine 🍷


Remote technology could save lives by monitoring health from home or outside the hospital. It could also push patients and health care providers further apart.

We’ve come a long way since the days of gunboat diplomacy…

Welcome to datamacy, the international data exchange powering relations between people, companies and countries.

Thailand has its own ways of dealing with such ‘requests’ 😁


If Thailand wants Chinese tourists, it must turn over tracking data, report claims.

NASA is about to launch the world’s most powerful space telescope. Webb’s first year of science could rewrite the history of the universe.


Recently, OpenAI opened public access to GPT-3, one of the world’s most sophisticated AI writing tools. It might fool you in a conversation.

While all atomic nuclei except hydrogen are composed of protons and neutrons, physicists have been searching for a particle consisting of two, three or four neutrons for over half a century. Experiments by a team of physicists of the Technical University of Munich (TUM) at the accelerator laboratory on the Garching research campus now indicate that a particle comprising four bound neutrons may well exist.

While agree that there are no systems in the universe made of only protons, they have been searching for particles comprising two, three or four neutrons for more than 50 years.

Should such a particle exist, parts of the theory of the strong interaction would need to be rethought. In addition, studying these particles in more detail could help us better understand the properties of neutron stars.

A team from the Limitless Space Institute (LSI), funded by the Defense Advanced Research Projects Agency (DARPA) and led by Dr. Harold “Sonny” White, a former NASA specialist, pioneer in warp drive or warp drive, has reported that he has discovered a veritable warp bubble in the real world. The event marks a breakthrough for scientists trying to develop a spacecraft capable of going faster than light.