Toggle light / dark theme

An enormous asteroid more massive than two Empire State Buildings is heading our way, but unlike the so-called planet-killer comet in the recent movie “Don’t Look Up,” this space rock will zoom harmlessly past Earth.

The stony asteroid, known as (7482) 1994 PC1, will pass at its closest on Jan. 18 at 4:51 p.m. EST (2151 GMT), traveling at 43,754 mph (70,415 km/h) and hurtling past Earth at a distance of 0.01324 astronomical units — 1.2 million miles (nearly 2 million kilometers), according to NASA JPL-Caltech’s Solar System Dynamics (SSD).

In a new study, researchers at Karolinska Institutet have identified the presence of a specific connection between a protein and an lncRNA molecule in liver cancer. By increasing the presence of the lncRNA molecule, the fat depots of the tumor cell decrease, which causes the division of tumor cells to cease, and they eventually die. The study, published in the journal Gut, contributes to increased knowledge that can add to a better diagnosis and future cancer treatments.

Tesla has signed a new deal to source nickel for battery cell production from an upcoming new mine in the United States. It’s a landmark deal to start sourcing the critical battery material in the US and help boost upcoming new mining projects.

Over the last few years, Tesla CEO Elon Musk has been pushing for nickel producers to boost production as he expects the resource could become a bottleneck for battery production.

The company gets its nickel overseas. Vale, the Brazilian mining giant, is Tesla’s main nickel supplier, and the company has recently done a big deal to secure nickel supply from New Caledonia. But, North American production of nickel is limited, and Tesla is not sourcing locally.

Similar projects in Denmark have used recaptured heat from smaller structures, such as supermarkets, to supply a nearby building or two. The Facebook project scales the technology to a level not yet reached in the world by producing up to 25 MW per hour of usable heat.

“Facebook opened their new data center in Odense,” said Denmark’s Minister of Climate, Energy, and Utilities, Dan Jørgensen, on Instagram. “It’s based on renewable energy only (from their own wind farm) and feeds their surplus heat into the district heating system. Good news for the transition to green energy!”

As a nation, Denmark has set a goal to eliminate the use of coal by 2030. The heat recovery project supports Odense’s even more aggressive goal to phase out coal (which 30 percent of the city still depends on for heat) by 2023 — a modern feat for a city that just celebrated its 1,031st anniversary. Facebook’s data center is estimated to reduce Odense’s demand for coal by up to 25 percent.

To make fusion energy a viable resource for the world’s energy grid, researchers need to understand the turbulent motion of plasmas: a mix of ions and electrons swirling around in reactor vessels. The plasma particles, following magnetic field lines in toroidal chambers known as tokamaks, must be confined long enough for fusion devices to produce significant gains in net energy, a challenge when the hot edge of the plasma (over 1 million degrees Celsius) is just centimeters away from the much cooler solid walls of the vessel.

Abhilash Mathews, a PhD candidate in the Department of Nuclear Science and Engineering working at MIT’s Plasma Science and Fusion Center (PSFC), believes this plasma edge to be a particularly rich source of unanswered questions. A turbulent boundary, it is central to understanding plasma confinement, fueling, and the potentially damaging heat fluxes that can strike material surfaces — factors that impact fusion reactor designs.

To better understand edge conditions, scientists focus on modeling turbulence at this boundary using numerical simulations that will help predict the plasma’s behavior. However, “first principles” simulations of this region are among the most challenging and time-consuming computations in fusion research. Progress could be accelerated if researchers could develop “reduced” computer models that run much faster, but with quantified levels of accuracy.