Toggle light / dark theme

This is interesting. It looks like SpaceX is abandoning their backup plan to launch V2.0 Starlink satellites with the Falcon 9 and instead they are going to launch them with Starship instead. They are also saying they will be ready to launch them as soon as 2 months from now. This confirms the rumors that I’ve been hearing that the Raptor 2 engine for Starship is much more stable than the Raptor 1 engines were.

Note that this means they are planning on launching satellites before they have perfected landing but this makes sense since they did the same with the Falcon 9, crashing and burning 19 rockets in a row until they were able to land part of one. It should take 5 or less orbital attempts to land the Starship booster stage. (They will lose a ton of engines with the booster stage so this will be a high priority to get working.)


TAMPA, Fla. — SpaceX has dropped a plan to use Falcon 9 to launch the 30,000 satellites in its proposed second-generation Starlink broadband constellation, and is instead focusing on a configuration leveraging its upcoming Starship vehicle.

The decision follows development progress that SpaceX said exceeded the company’s expectations and means it could start “launching the Gen2 system as early as March 2022,” SpaceX lawyer William Wiltshire said in a Jan. 7 letter to the Federal Communications Commission.

Houston, TX — Oct 8, 2020 - In a letter published today in the New England Journal of Medicine, a team of physicians from Baylor College of Medicine, Texas Children’s Hospital, and the University of California, San Francisco, describe a remarkable case of a Type 1 diabetes (T1D) patient, who no longer needs insulin to maintain optimal blood sugar levels. The physicians employed a precision/personalized medicine approach to specifically target the underlying genetic mutation, which was the primary driver of this patient’s diabetes.

“To the best of our knowledge, this is the first example of a T1D patient who has experienced a complete reversal of insulin-dependence and we are excited by the prospect that that could be a viable therapeutic strategy for a subset of T1D patients” said corresponding author Dr. Lisa R. Forbes, deputy director for clinical services and community outreach for the Texas Children’s William T. Shearer Center for Human Immunobiology and assistant professor of Pediatrics, Immunology, Allergy and Retrovirology at Baylor.

T1D is a chronic condition in which the pancreas produces little to no insulin, a hormone that maintains sugar levels in the blood. Currently, the treatment options available to T1D patients consist of managing blood sugar levels with insulin, diet and exercise to prevent further complications.

Researchers at the Indian Institute of Technology Bhubaneswar, in collaboration with TCS Research and Wageningen University, recently devised a new strategy that could improve coordination among different robots tackling complex missions as a team. This strategy, introduced in a paper pre-published on arXiv, is based on a split-architecture that addresses communication and computations separately, while periodically coordinating the two to achieve optimal results.

For many years, a bottleneck in technological development has been how to get processors and memories to work faster together. Now, researchers at Lund University in Sweden have presented a new solution integrating a memory cell with a processor, which enables much faster calculations, as they happen in the memory circuit itself.

In an article in Nature Electronics, the researchers present a new configuration, in which a cell is integrated with a vertical transistor selector, all at the nanoscale. This brings improvements in scalability, speed and compared with current mass storage solutions.

The fundamental issue is that anything requiring large amounts of data to be processed, such as AI and , requires speed and more capacity. For this to be successful, the memory and processor need to be as close to each other as possible. In addition, it must be possible to run the calculations in an energy-efficient manner, not least as current technology generates high temperatures with high loads.

Carbon-based organic micropollutants in water can be removed by treatment with high-intensity pulses of light in a procedure developed and demonstrated by researchers at KAUST.

This photodegradation process was already known to be feasible, but its use was limited by the long times it required. Luca Fortunato, Thomas Anthopoulos and colleagues have demonstrated that this photodegradation treatment can be dramatically accelerated with high-intensity pulses generated from a xenon flash lamp.

“An interesting aspect of this work is that we combined the expertise and technologies of two different fields,” says Fortunato. He explains that the collaboration between the two different research departments—KAUST’s Solar Center and Water Desalination and Reuse Center—allowed the team to adopt a pulsed light system that was previously used to process semiconductor materials for transistors and solar cells.

Walt Disney Co. has been approved for a patent to project moving 3D images on real-world objects to interact with theme park visitors, making it easier to create interactive attractions throughout its theme parks.

The U.S. Patent Office approved the patent for Disney Enterprises last month for a technology described as a “Virtual World Simulator.” Disney officials say they have no immediate plans to use the technology.

Stem-cell-based therapies can potentially reverse organ dysfunction and diseases, but the removal of impaired tissue and activation of a program leading to organ regeneration pose major challenges. In mice, a 4-day fasting mimicking diet (FMD) induces a stepwise expression of Sox17 and Pdx-1, followed by Ngn3-driven generation of insulin-producing β cells, resembling that observed during pancreatic development. FMD cycles restore insulin secretion and glucose homeostasis in both type 2 and type 1 diabetes mouse models. In human type 1 diabetes pancreatic islets, fasting conditions reduce PKA and mTOR activity and induce Sox2 and Ngn3 expression and insulin production. The effects of the FMD are reversed by IGF-1 treatment and recapitulated by PKA and mTOR inhibition. These results indicate that a FMD promotes the reprogramming of pancreatic cells to restore insulin generation in islets from T1D patients and reverse both T1D and T2D phenotypes in mouse models.


A periodic short-term diet that mimics fasting modulates β-cell regeneration and promotes insulin secretion and glucose homeostasis with potential to treat both type 1 and type 2 diabetes.

Originally published on Towards AI the World’s Leading AI and Technology News and Media Company. If you are building an AI-related product or service, we invite you to consider becoming an AI sponsor. At Towards AI, we help scale AI and technology startups. Let us help you unleash your technology to the masses.

Introduction

Crowdsourcing is a popular tool to gather data for training Machine Learning models in different industries, with the added advantage of scalability and automation for these projects. It allowed scalability and automation in such projects however, it is not the only area where crowdsourcing is used.

A man with terminal heart disease is responding well three days after being given a genetically modified pig heart in a first-of-its-kind surgery, his doctors reported on Monday.
The surgery, performed by a team at the University of Maryland Medicine in the United States, is among the first to demonstrate the feasibility of a pig-to-human heart transplant, a field made possible by new gene editing tools.
If proven successful, scientists hope pig organs could help alleviate shortages of donor organs.
For David Bennett, a 57-year-old from Maryland, the heart transplant was his last option.

Al Jazeera’s Barbara Angopa reports.

- Follow us on Twitter: https://twitter.com/AJEnglish/
- Find us on Facebook: https://www.facebook.com/aljazeera/
- Check our website: https://www.aljazeera.com/

#HeartTransplant #PigsHeart #DavidBennett