Menu

Blog

Page 5819

May 10, 2021

Never-ending detonations could blast hypersonic craft into space

Posted by in category: space travel

O,.o! Woah


A never-ending detonation could be the key to hypersonic flight and space planes that can seamlessly fly from Earth into orbit. And now, researchers have recreated the explosive phenomenon in the lab that could make it possible.

Detonations are a particularly powerful kind of explosion that move outward faster than the speed of sound. The massive explosion that rocked the port of Beirut in Lebanon last August was a detonation, and the widespread destruction it caused demonstrates the huge amounts of energy they can produce.

May 10, 2021

Studies Find Apple Compounds Boost Neurogenesis, May Improve Brain Function

Posted by in categories: biotech/medical, neuroscience

In vivo studies in mice showed that quercetin and DHBA stimulated production of neurons from stem cells in specific brain areas.

May 10, 2021

Physicists observe modified energy landscapes at the intersection of 2D materials

Posted by in categories: computing, particle physics, quantum physics

In 1884, Edwin Abbott wrote the novel Flatland: A Romance in Many Dimensions as a satire of Victorian hierarchy. He imagined a world that existed only in two dimensions, where the beings are 2D geometric figures. The physics of such a world is somewhat akin to that of modern 2D materials, such as graphene and transition metal dichalcogenides, which include tungsten disulfide (WS2), tungsten diselenide (WSe2), molybdenum disulfide (MoS2) and molybdenum diselenide (MoSe2).

Modern 2D materials consist of single-atom layers, where electrons can move in two dimensions but their motion in the third dimension is restricted. Due to this ‘squeeze’, 2D materials have enhanced optical and that show great promise as next-generation, ultrathin devices in the fields of energy, communications, imaging and quantum computing, among others.

Typically, for all these applications, the 2D materials are envisioned in flat-lying arrangements. Unfortunately, however, the strength of these materials is also their greatest weakness—they are extremely thin. This means that when they are illuminated, light can interact with them only over a tiny thickness, which limits their usefulness. To overcome this shortcoming, researchers are starting to look for new ways to fold the 2D materials into complex 3D shapes.

May 10, 2021

Reinforcing the Body’s Defenses against Cancer

Posted by in category: biotech/medical

New immunotherapy developments include the use of tumor-infiltrating lymphocytes, allogeneic T cells, co-stimulatory signals, and engineered cytokines.

May 10, 2021

The Pentagon Inches Toward Letting AI Control Weapons

Posted by in categories: drones, military, robotics/AI, terrorism

Last August, several dozen military drones and tanklike robots took to the skies and roads 40 miles south of Seattle. Their mission: Find terrorists suspected of hiding among several buildings.

So many robots were involved in the operation that no human operator could keep a close eye on all of them. So they were given instructions to find—and eliminate—enemy combatants when necessary.

The mission was just an exercise, organized by the Defense Advanced Research Projects Agency, a blue-sky research division of the Pentagon; the robots were armed with nothing more lethal than radio transmitters designed to simulate interactions with both friendly and enemy robots.

May 10, 2021

New species discovered in the human gut microbiome could improve nitrogen availability

Posted by in categories: biotech/medical, health

This new species, Desulfovibrio diazotrophicus, is from a family of bacteria that survive and grow on sulfur-containing compounds. They are known as sulfate-reducing bacteria (SRB) and a biproduct of their activity is the release of the gas hydrogen sulfide, which has a characteristic ‘rotten egg’ smell. Whilst this is unpleasant for those around you, there is also some concern that it is detrimental for gut health; the presence of SRB has been associated with gut inflammation, inflammatory bowel disease (IBD) and colorectal cancer.

Despite this, evidence for a definitive link between SRB and chronic disease has never been established. For a start, they are very widespread; around half the human population have SRB in their gut, so maybe not all of them are bad? They may even have positive effects. They release energy and nutrients from the material that other bacteria produce when they are fermenting the food we eat.

This uncertainty triggered interest from the , including scientists from the Quadram Institute (QI), who want to understand exactly what SRB do in the microbiome and how they interact with food and the gut. Very few species have been characterized, most from Western countries. To broaden the picture, QI researchers have been working with Professor Chen Wei and colleagues from Jiangnan University, China to isolate and characterize SRB from the intestinal tract of healthy Chinese and British people. The research was funded by the Biotechnology and Biological Sciences Research Council, part of UKRI.

May 10, 2021

The Science of Aliens, Part 2: What Kind of Genetic Code Would Extraterrestrials Have?

Posted by in categories: alien life, chemistry, genetics, science

Some thoughts about the genetic code aliens would use in the 2nd part of the series: The Science of Aliens:


Alien life would likely have different biochemistry, which may change the way it reproduces.

May 10, 2021

Are We on the Brink of a New Age of Scientific Discovery?

Posted by in categories: computing, nuclear energy, particle physics

In 2001 at the Brookhaven National Laboratory in Upton, New York, a facility used for research in nuclear and high-energy physics, scientists experimenting with a subatomic particle called a muon encountered something unexpected.

To explain the fundamental physical forces at work in the universe and to predict the results of high-energy particle experiments like those conducted at Brookhaven, Fermilab in Illinois, and at CERN ’s Large Hadron Collider in Geneva, Switzerland, physicists rely on the decades-old theory called the Standard Model, which should explain the precise behavior of muons when they are fired through an intense magnetic field created in a superconducting magnetic storage ring. When the muon in the Brookhaven experiment reacted in a way that differed from their predictions, researchers realized they were on the brink of a discovery that could change science’s understanding of how the universe works.

Continue reading “Are We on the Brink of a New Age of Scientific Discovery?” »

May 10, 2021

NASA spacecraft carrying history-making asteroid sample will head toward Earth

Posted by in categories: materials, space

After spending nearly two-and-a-half years together, a NASA spacecraft will bid farewell to its asteroid companion Monday and begin the long journey back to Earth.

The OSIRIS-REx spacecraft is NASA’s first asteroid sample return mission, and it carries a generous amount of material collected from the near-Earth asteroid Bennu.

May 10, 2021

Scientists resurrect mysterious Judean date palms from biblical era

Posted by in category: genetics

Methuselah the tree was grown from a 2000-year-old seed found at Masada. Now more have been grown and genetic analysis finds a twist in the origin story of the ‘Judean date’.