Toggle light / dark theme

One year after winter storms crippled Texas’s electricity grid, contributing to more than 200 deaths, a Cornell University-led analysis recommends contracting improvements to reduce decentralized energy markets’ vulnerability to rare events.

Such “energy-only” markets rely on investors to anticipate demand for all conditions and build appropriate resiliency into the system. They allow prices to soar during extreme events to incentivize preparedness.

But in Texas, where Winter Storm Uri caused catastrophic blackouts over five consecutive days of frigid temperatures, the crisis revealed the market’s failure to manage risk as designed, says Jacob Mays, assistant professor in the School of Civil and Environmental Engineering at Cornell. Winterization investment fell short, he said, because the payoff proved too distant and uncertain.

Researchers at École Polytechnique Fédérale de Lausanne (EPFL) and the Hitachi Cambridge Laboratory have recently designed an integrated circuit (IC) that integrates silicon quantum dots with conventional readout electronics. This chip, introduced in a paper published in Nature Electronics, is based on a 40-nm cryogenic complementary metal-oxide semiconductor (CMOS) technology that is readily and commercially available.

“Our recent paper builds on the expertise of the two groups involved,” Andrea Ruffino, one of the researchers at EPFL who carried out the study, told TechXplore. “The goal of our group was to build cryogenic (Bi)CMOS for readout and control of quantum computers, to be co-packaged or co-integrated in the final stage with silicon quantum processors. On the other hand, the team at the Hitachi Cambridge Laboratory have been studying silicon for many years.”

Ruffino and his colleagues at EPFL joined forces with the team at the Hitachi Cambridge Laboratory with the common goal of uniting classical circuits and quantum devices on a . Their paper builds on some of their previous efforts, including the proposal of cryogenic CMOS ICs for quantum computing, as well as the realization of fast-sensing and time-multiplexed sensing of silicon quantum devices.

Malware families are making use of PrivateLoader’s pay-per-install service in order to expand their victim list.


A detailed examination of a Pay-per-install (PPI) malware service called PrivateLoader has revealed its crucial role in the delivery of a variety of malware such as SmokeLoader, RedLine Stealer, Vidar, Raccoon, and GCleaner since at least May 2021.

A new research methodology has allowed specialists to track active vendors in several dark web platformsbased solely on how they write their ads and posts. Using stylometry, the experts were able to analyze thousands of identities of various suppliers in black markets and identify if these profiles correspond to specific people.

This study involved the collection of nodes of information extracted from vendor profiles on four now-shutdown cybercriminal platforms, including Valhalla, Dream Market, Evolution, and Silk Road 2.

Unity acquires Ziva Dynamics, leader in sophisticated simulation and deformation, machine learning, and real-time character creation.

At Unity, we are laser-focused on democratizing tools for creators, so that the industry’s most brilliant gems are available to all, not just a select few. And we are continuously focused on helping artists make their dreams a reality.

We recently acquired Weta Digital’s tools, technology, and engineering talent to deliver on this vision. Today, we’re proud to announce that we’re doubling down on our commitment to artists with the acquisition of Ziva Dynamics.

Read more on the Unity Blog: https://on.unity.com/3GXz4Kp

A new set of molecular building blocks aims to make complex chemistry as simple and accessible as a toy construction kit.

Researchers at the University of Illinois Urbana-Champaign and collaborators at Revolution Medicines Inc. developed a new class of chemical building blocks that simply snap together to form 3D with complex twists and turns, and an automated machine to assemble the blocks like a 3D printer for molecules.

This automation could allow chemists and nonchemists alike to develop new pharmaceuticals, materials, diagnostic probes, catalysts, perfumes, sweeteners and more, said study leader Dr. Martin D. Burke, a professor of chemistry at Illinois and a member of the Carle Illinois College of Medicine, as well as a medical doctor. The researchers reported their findings in the journal Nature.

The latest on some space debris…


The Falcon 9 DSCOVR’s booster: 7 Feb. 2022.

The animation above comes from 268, single, 4-second exposures, remotely taken with the “Elena” (PlaneWave 17″+Paramount ME+SBIG STL-6303E) robotic unit available at Virtual Telescope. The telescope tracked the apparent motion of the booster, so it looks like a sharp dot, with surrounding stars moving on the background. East is up, South on the left.

There was a VERY strong Moon interference, the booster was in the same spot of the sky as our natural satellite and grabbing it was quite hard. As we can see, the booster is blinking, as it is tumbling with a period of about 90 seconds.