Toggle light / dark theme

In order to satiate youth-hungry bald people, scientists are growing human hair cells on mice.

Ernesto Lujan, a biologist and founder of medical startup dNovo, told MIT Technology Review that his company has successfully transplanted human hair stem cells onto a mouse.

The result is a horrifying abomination of all that is good, and proof that science has gone too far.

In the future, a trip from Beijing to New York could take you via suborbital space.

That’s because Chinese aerospace firm Space Transportation is developing a “rocket with wings” designed for space tourism as well as incredibly fast passenger transport similar to that of a famous concept shown off by SpaceX in 2017.

According to a report from Space.com, the fully reusable space plane would provide rapid point-to-point travel between any two locations on Earth via suborbital flight, and a crewed test flight could take place as early as 2025.

Researchers from KTH Royal Institute of Technology and Stanford University have fabricated a material for computer components that enables the commercial viability of computers that mimic the human brain.

Electrochemical random access (ECRAM) memory components made with 2D titanium carbide showed outstanding potential for complementing classical transistor technology, and contributing toward commercialization of powerful computers that are modeled after the brain’s neural network. Such neuromorphic computers can be thousands times more energy efficient than today’s computers.

These advances in computing are possible because of some fundamental differences from the classic computing architecture in use today, and the ECRAM, a component that acts as a sort of synaptic cell in an artificial neural network, says KTH Associate Professor Max Hamedi.

Artificial intelligence will soon become one of the most important, and likely most dangerous, aspects of the metaverse. I’m talking about agenda-driven artificial agents that look and act like any other users but are virtual simulations that will engage us in “conversational manipulation,” targeting us on behalf of paying advertisers.

This is especially dangerous when the AI algorithms have access to data about our personal interests, beliefs, habits and temperament, while also reading our facial expressions and vocal inflections. Such agents will be able to pitch us more skillfully than any salesman. And it won’t just be to sell us products and services – they could easily push political propaganda and targeted misinformation on behalf of the highest bidder.

And because these AI agents will look and sound like anyone else in the metaverse, our natural skepticism to advertising will not protect us. For these reasons, we need to regulate some aspects of the coming metaverse, especially AI-driven agents. If we don’t, promotional AI-avatars will fill our lives, sensing our emotions in real time and quickly adjusting their tactics for a level of micro-targeting never before experienced.

Safed’s Ziv Medical Center has sent a letter to Health Ministry director Nachman Ash requesting he grant emergency authorization for the anti-COVID drug Amor 18 developed by the Israeli company Amorphical in order to treat patients in moderate to serious condition due to the coronavirus, Channel 2 reported Friday.

In letter to Health Ministry director, Ziv Medical Center points to promising results from Amor 18’s clinical trial, where all patients who received drug went on to recover (drug uses Amorphous Calcium Carbonate: ACC).

Israeli biotech company Amorphical recently published what it says are promising results from the second stage of its Amor 18 clinical study.

-please note: Regeneron helped end the ebola pandemic by ending clinical trials early and getting treatments to patients ASAP.

Clinical trial: https://clinicaltrials.gov/ct2/show/NCT04900337

Energy company Royal Dutch Shell has started operations at the power-to-hydrogen electrolyzer in Zhangjiakou, China, a joint venture between Shell (China) and Zhangjiakou City Transport Construction Investment Holding Group, the Anglo-Dutch company wrote on Friday. The electrolyzer will reportedly provide about half of the total green hydrogen supply for fuel cell vehicles at the Zhangjiakou competition zone during this year’s Winter Olympic Games, set to begin on February 4. Shell looks set to make further investments in China’s hydrogen sector. “We see opportunities across the hydrogen supply chain in China, including its production, storage and shipping. We want to be the trusted partner for our customers from different sectors as we help them decarbonise in China,” commented Wael Sawan, director of Shell’s Integrated Gas, Renewable and Energy Solutions unit. The companies, which took 13 months to complete the project, have plans to scale the power-to-hydrogen electrolyzer up to 60 MW in the next two years. Utilizing onshore wind power, the project will initially supply green hydrogen to fuel a fleet of more than 600 fuel cell vehicles at the Zhangjiakou competition zone during the Winter Olympic Games. After that, the hydrogen will be used for public and commercial transport in the Beijing-Tianjin-Hebei region.

Green Hydrogen Systems, a provider of pressurized alkaline electrolyzers used in on-site hydrogen production based on renewable electricity, has signed a supply agreement with Edinburgh-based Logan Energy to deliver electrolysis equipment for a project in England. The order includes the supply of two electrolyzers with a combined capacity of 0.9 MW for the production of green hydrogen from renewable energy. “Manufactured by Green Hydrogen Systems and operated by Logan Energy, the electrolysers will be deployed in a 40 ft container as a complete green hydrogen plant as part of plans to develop a regional hydrogen economy in Dorset, England,” Green Hydrogen Systems wrote on Tuesday. When fully operational during Q4 of 2022, the ordered electrolyzers will reportedly have the capacity to provide approximately 389 kg green hydrogen per day.

Second, we need to be aware of the manifest biases and fallacies that magnify the weight humans put on potential losses compared to potential future gains. As a result of these biases, humans often seek to preserve the status quo over pursuing activities that lead to future changes, even when the expected (but risky) gains from the latter may outweigh those of maintaining the status quo. The preference for the status quo, and neat narratives that oversimplify complex scenarios, can lead to overlooking (or ignoring) important information that is not consistent with the current generally accepted meme — illustrated, perhaps, in Musk’s continued optimism for autonomous vehicles despite the evidence leading to others downscaling their forecasts.

The first and second points together lead to the third important consideration: the importance of independently verified data over forecasts and opinion in determining the need for and appropriateness of policy interventions. And data is historical by nature. Pausing to collect it rather than rushing to respond is recommended.

To that end, we can use available data to analyze whether increasing use of AI is demonstrably affecting key labor market performance indicators: labor productivity and multifactor productivity growth. If, as Keynes suggests, AI-driven technological change is increasing the potential for new means of economizing the use of labor to outrun the pace of finding new ways to use it, we would expect to see both statistics rising in the era dominated by AI. Yet as Figures 1 and 2 show, the exact opposite appears true for a wide range of OECD countries. Neither does the data suggest that other key labor market indicators have changed negatively with the advent of AI. As with the computer industry, we see the effects of AI everywhere but in the productivity statistics.