Toggle light / dark theme

The Public Utilities Commission of Texas (PUCT) on Thursday adopted a rule requiring virtual currency mining facilities in the region maintained by the Energy Reliability Council of Texas (ERCOT) to register with the commission. In these registrations, the PUCT seeks each facility to share its location, ownership information and demand for electricity.

Cryptocurrency mining, in which computers crack codes in order to verify crypto transactions, has been on the rise in Texas for the past few years, specifically after China banned the practice in May 2021. The state itself was luring miners to set up shop here, offering relative regulatory freedom at first. But in the last year, Texans have been speaking out against the mines, which operate scores of their large computers at all hours of the day. The computer usage, coupled with the fans required to cool down the hard-working machines, can use up a lot of power and make the kind of noise that residents say make them sick.

Physicist Francis Perrin sat at a nuclearfuel-processing plant down in the south of France, thinking to himself: “This cannot be possible.” It was 1972. On the one hand, there was a dark piece of radioactive natural uranium ore, extracted from a mine in Africa. On the other, accepted scientific data about the constant ratio of radioactive uranium in ore.

Examination of this high-grade ore from a mine in Gabon was found to contain a lower proportion of uranium-235 (U-235) — the fissile sort. Only a tiny bit less, but enough to make the researchers sit back and scratch their heads.

Computer science expert Kristian Hammond discusses Northwestern’s Center for Advancing Safety of Machine Intelligence and its efforts in making AI more responsible.

Computer scientist Kristian Hammond says the Center for Advancing Safety of Machine Intelligence is working to develop the kinds of guardrails that will help us use AI for a bigger and better impact on the world without compromising our well-being. Photo by Jonah Elkowitz.

Oxford Nanopore Technologies and Wasatch BioLabs have joined forces to develop a groundbreaking direct whole-methylome sequencing (dWMS) product. This collaboration addresses the limitations of traditional methylation sequencing methods, such as bisulfite sequencing and methylation microarrays.

By leveraging Oxford Nanopore’s advanced sequencing technology and Wasatch BioLabs’ proprietary methylation assays, the partners aim to offer a more comprehensive and accurate approach to studying epigenetic modifications. dWMS eliminates the need for harsh chemical treatments and PCR amplification, reducing biases and improving genome-wide coverage.

This innovative technology has the potential to revolutionize epigenetic research, providing valuable insights into the role of methylation in various biological processes and diseases. The collaboration between these two companies is poised to drive significant advancements in genomics and precision medicine.