Toggle light / dark theme

Scientists from Roswell Park Comprehensive Cancer Center have shed light on a different way of overcoming mechanisms of resistance to specific therapeutic agents used to treat cancer. In a new article published March 1 in the journal Cell Reports, the researchers propose a new approach to cancer treatment based on the way different cancer cells divide.

A collaborative team led by Agnieszka Witkiewicz, MD, Professor of Oncology, and Erik Knudsen, Ph.D., Professor of Oncology and Chair of Molecular and Cellular Biology, from Roswell Park investigated over 500 from a multitude of cancer types, as well as preclinical tumor models. The researchers then analyzed based on their dependency for CDK and CCN, two genes that drive the cell cycle and determine how often a cancer cell divides.

“We found that the way cancer cells divide is highly varied, and that diversity represents a tremendous challenge for some widely used cancer therapies because it often contributes to treatment resistance,” says Dr. Witkiewicz, the study’s senior author. “However, with a better understanding of these heterogenous features of cancer cell division, different therapies could be deployed in a more precise and effective fashion.”

Turbojet engines are an incredible piece of 20th century engineering that except for some edge cases, have mostly been replaced by Turbofans. Still, even the most basic early designs were groundbreaking in their time. Material science was applied to make them more reliable, more powerful, and lighter. But all of those incredible advances go completely out the window when you’re [Joel] of [Integza], and you prefer to build your internal combustion engines using repurposed butane canisters and 3D printed parts as you see in the video below the break.

To understand [Integza]’s engine, a quick explanation of Turbojet engines is helpful. Just like any other internal combustion engine, air is compressed, fuel is burned, and the reaction produces work. In a turbojet, a compressor compresses air. Fuel is added in a combustor and ignited, and the expanding exhaust drives a turbine that in turn drives the compressor since both are attached to the same shaft. Exhaust whose energy isn’t spent in turning the turbine is expelled and produces thrust, which propels the engine and the vehicle it’s attached to in the opposite direction. Simple, right? Right! Until the 3D printer comes in.

Sadly for 3D printed parts, they are made of plastic. Last we checked, plastic isn’t metal, and so 3D printing a turbine to give the extremely hot exhaust something turn just isn’t going to work. But what if you just skipped the whole turbine part, and powered the compressor with an electric motor? And instead of using an axial compressor with tons of tiny blades that would likely be impossible to 3D print with enough strength, you went with a sturdy, easy to print centrifugal compressor? Of course, that’s exactly what [Integza] did, or we wouldn’t be talking about it. The results are fantastic, especially considering that the entire machine was built with 3D printing and a home made spot welder.

The Berlin Affordable Housing Challenge is part of Bee Breeders’ Affordable Housing competition series. Run in partnership with ARCHHIVE BOOKS, this competition tasked participants with submitting innovative design proposals for tackling Berlin’s housing crisis.

Germany’s new government, formed in 2021, has vowed to make affordable housing a centerpiece of its agenda. Berlin, the capital city and the country’s center of gravity for entrepreneurship and new business, is in particular feeling extreme housing market pressures. According to an article published by NPR during the period of this competition, eight out of 10 city residents are now renters, where rent has increased 42% since 2016, and where an average of 40,000 new residents arrive each year.

When knowledge has advanced to a state that includes a predictive understanding of the relationship between genome sequence and organism phenotype it will be possible for future engineers to design and produce synthetic organisms. However, the possibility of synthetic biology does not necessarily guarantee its feasibility, in much the same way that the possibility of a brute force attack fails to ensure the timely breaking of robust encryption. The size and range of natural genomes, from a few million base pairs for bacteria to over 100 billion base pairs for some plants, suggests it is necessary to evaluate the practical limits of designing genomes of similar complexity.

SpaceX CEO Elon Musk is warning users in Ukraine who have received one of the company’s Starlink dishes that the connection could be targeted by Russian state actors.

“Important warning: Starlink is the only non-Russian communications system still working in some parts of Ukraine, so probability of being targeted is high,” Musk tweeted on Thursday.

“Please use with caution,” he added.

A study published in Frontiers in Computational Neuroscience has revealed that the human brain’s structures operate in up to 11 dimensions.

The dimensions are not understood as the classic definition of a dimension, which most of us understand, the Blue Brain Project explains.

Conducted by the Blue Brain Project, scientists discovered fascinating new details about the human brain’s complexity.