Toggle light / dark theme

Circa 2012


Hydrogen sulphide (H2S) is a colourless gas with the odour of rotten eggs and has recently been recognized as a signal mediator in physiological activities related with the regulation of homeostasis, the vascular system and the inflammatory system. Here we show that H2S donors, including sodium hydrogen sulphide (NaHS), GYY 4137 and diallyltrisulfide (DATS), synergistically enhanced the anti-cancer effect of a green tea polyphenol (−)-epigallocatechin-3-O-gallate (EGCG) against multiple myeloma cells without affecting normal cells. NaHS significantly potentiated the anti-cancer effect of EGCG and prolonged survival in a mouse xenograft model. In this mechanism, H2S enhanced apoptotic cell death through cyclic guanosine monophosphate (cGMP)/acid sphingomyelinase pathway induced by EGCG.

Circa 2017 Egcg an active ingredient in green tea kills cancer.


Hydrogen sulphide (H2S) is a colourless gas with the odour of rotten eggs and has recently been recognized as a signal mediator in physiological activities related with the regulation of homeostasis, the vascular system and the inflammatory system. Here we show that H2S donors, including sodium hydrogen sulphide (NaHS), GYY 4137 and diallyltrisulfide (DATS), synergistically enhanced the anti-cancer effect of a green tea polyphenol (−)-epigallocatechin-3-O-gallate (EGCG) against multiple myeloma cells without affecting normal cells. NaHS significantly potentiated the anti-cancer effect of EGCG and prolonged survival in a mouse xenograft model. In this mechanism, H2S enhanced apoptotic cell death through cyclic guanosine monophosphate (cGMP)/acid sphingomyelinase pathway induced by EGCG.

To maintain peak efficiency, solar cells must be regularly cleaned of dust and other accumulated dirt. However, many panels are installed in high or hard-to-reach locations, which makes cleaning them difficult, time-consuming, and also simply dangerous. One solution is to use aerial drones to spray soapy water on dirty solar panels. However, these drones often run out of battery quite quickly. In addition, they also do not make direct contact with the panels, so they may not completely wash away dirt.

To solve these problems, a Belgian startup, ART Robotics, has developed HELIOS, an automated cleaning service for solar panels. It’s a fully autonomous system that can access difficult-to-reach places and eliminates dangerous and costly work.

The system consists of autonomous cleaning robots that can move autonomously over the panels. These are placed on the solar installation using a drone platform. The drone uses its computer vision to spot the photovoltaic array and flies the bot to the exact location. The HELIOS Cleaning Bot is a lightweight robot that can autonomously clean solar panels. An innovative traction system allows the robot to move on inclined surfaces and even cross over to adjacent panels, thoroughly cleaning them using a brush and vacuum combination.

It can create a lot of mist and it really looks like a magic smoke capacitor. I can say the project is a success. The idea is to add perfume to the water and give a good smell to your home. Just a few drops and it will give a very nice odor to the water mist. So this project is cool but is useful as well.

If my videos help you, consider supporting my work on my PATREON or a donation on my PayPal. Thanks again and see you later guys.

A new study reveals that the iconic extinct Megalodon or megatooth shark grew to larger sizes in cooler environments than in warmer areas.

DePaul University paleobiology professor Kenshu Shimada and coauthors take a renewed look through time and space at the body size patterns of Otodus , the fossil shark that lived nearly worldwide roughly 15 to 3.6 million years ago. The new study appears in the international journal Historical Biology.

Otodus megalodon is commonly portrayed as a gigantic, monstrous shark in novels and films, such as the 2018 sci-fi thriller “The Meg.” In reality, this species is only known from teeth and vertebrae in the , although it is generally accepted scientifically that the species was indeed quite gigantic, growing to at least 50 feet (15 meters) and possibly as much as 65 feet (20 meters). The new study re-examined published records of geographic occurrences of Megalodon teeth along with their estimated total body lengths.

A new review paper on magnetic topological materials introduces a theoretical concept that interweaves magnetism and topology. It identifies and surveys potential new magnetic topological materials and suggests possible future applications in spin and quantum electronics and as materials for efficient energy conversion.

Magnetic topological materials represent a class of compounds whose properties are strongly influenced by the of the electronic wavefunctions coupled with their spin configuration. Topology is a simple concept dealing with the surfaces of objects. The topology of a mathematical structure is identical if it is preserved under continuous deformation. A pancake has the same topology as a cube, a donut as a coffee cup, and a pretzel as a board with three holes. Adding spin offers additional structure—a new degree of freedom—for the realization of new states of matter that are not known in non-magnetic materials. Magnetic topological materials can support chiral channels of electrons and spins, and can be used for an array of applications including information storage, control of dissipationless spin and charge transport, and giant responses under such as temperature and light.

The review summarizes the theoretical and experimental progress achieved in the field of magnetic topological materials beginning with the theoretical prediction of the quantum anomalous Hall effect without Landau levels, leading to recent discoveries of magnetic Weyl semimetals and antiferromagnetic topological insulators. It also outlines recent tabulations of all magnetic symmetry group representations and topology. As a result, all known magnetic materials—including future discoveries—can be fully characterized by their topological properties. The identification of materials for a specific technological application (e.g., quantum anomalous Hall) is straightforward.

In findings that could help advance another “viable pathway” to fusion energy, research led by Lawrence Livermore National Laboratory (LLNL) physicists has proven the existence of neutrons produced through thermonuclear reactions from a sheared-flow stabilized Z-pinch device.

The researchers used advanced computer modeling techniques and diagnostic measurement devices honed at LLNL to solve a decades-old problem of distinguishing neutrons produced by from ones produced by ion beam-driven instabilities for plasmas in the magneto-inertial fusion regime.

While the team’s previous research showed neutrons measured from sheared-flow stabilized Z-pinch devices were “consistent with thermonuclear production, we hadn’t completely proven it yet,” said LLNL physicist Drew Higginson, one of the co-authors of a paper recently published in Physics of Plasmas.