Toggle light / dark theme

About 750 million people in the world do not have access to electricity at night. Solar cells provide power during the day, but saving energy for later use requires substantial battery storage.

In Applied Physics Letters, researchers from Stanford University constructed a that harvests energy from the environment during the day and night, avoiding the need for batteries altogether. The device makes use of the heat leaking from Earth back into space—energy that is on the same order of magnitude as incoming solar radiation.

At night, radiate and lose heat to the sky, reaching temperatures a few degrees below the ambient air. The device under development uses a thermoelectric module to generate voltage and current from the temperature gradient between the cell and the air. This process depends on the thermal design of the system, which includes a hot side and a cold side.

InAs nanowires are emerging as go-to materials in a variety of applications ranging from optoelectronics to nanoelectronics, yet a consensus on their mechanical properties is still lacking. The mechanical properties of wurtzite InAs nanowires are here investigated via a multitechnique approach, exploiting electron microscopies, ultrafast photoacoustics, and finite element simulations. A benchmarked elastic matrix is provided and a Young modulus of 97 GPa is obtained, thus clarifying the debated issue of InAs NW elastic properties. The validity of the analytical approaches and approximations commonly adopted to retrieve the elastic properties from ultrafast spectroscopies is discussed. The mechanism triggering the oscillations is unveiled. Nanowire oscillations in this system arise from a sudden expansion of the supporting substrate rather than the nanowire itself.

MIT has launched a new academia and industry partnership called the AI Hardware Program that aims to boost research and development.


“A sharp focus on AI hardware manufacturing, research, and design is critical to meet the demands of the world’s evolving devices, architectures, and systems,” says Anantha Chandrakasan, dean of the MIT School of Engineering, and Vannevar Bush Professor of Electrical Engineering and Computer Science.

Microsoft and Hewlett Packard Enterprise (HSE) are working with NASA scientists to develop an AI system for inspecting astronauts’ gloves.

Space is an unforgiving environment and equipment failures can be catastrophic. Gloves are particularly prone to wear and tear as they’re used for just about everything, including repairing equipment and installing new equipment.

Currently, astronauts will send back images of their gloves to Earth to be manually examined by NASA analysts.

Join us on Patreon!
https://www.patreon.com/MichaelLustgartenPhD

Papers referenced in the video:
Dietary oxalate to calcium ratio and incident cardiovascular events: a 10-year follow-up among an Asian population.
https://pubmed.ncbi.nlm.nih.gov/35346210/

Effect of Different Cooking Methods on Vegetable Oxalate Content.
https://pubmed.ncbi.nlm.nih.gov/15826055/

Oxalate in renal stone disease: the terminal metabolite that just won’t go away.

Chemical biology professor, Suyang Xu, works to crack the secrets of new states of matter.


Throughout human history, most of our efforts to store information, from knots and oracle bones to bamboo markings and the written word, boil down to two techniques: using characters or shapes to represent information. Today, huge amounts of information are stored on silicon wafers with zeros and ones, but a new material at the border of quantum chemistry and quantum physics could enable vast improvements in storage.

Suyang Xu, assistant professor of chemical biology, is tying quantum mechanical “knots” in topological materials, which may be the key to unlocking the potential of quantum technologies to store and process vast arrays of information and bring game-changing advances in a variety of fields.