Toggle light / dark theme

The Hubble space telescope has a primary mirror of 2.4 meters. The Nancy Grace Roman telescope also has a mirror measuring 2.4 meters, and the James Webb Space Telescope has a whopping 6.5 meter primary mirror. They get the job done that they were designed to do, but what if… we could have even bigger mirrors?

The larger the mirror, the more light is collected. This means that we can see farther back in time with bigger mirrors to observe star and galaxy formation, image exoplanets directly, and work out just what dark matter is.

But the process for creating a mirror is involved and takes time. There is casting the mirror blank to get the basic shape. Then you have to toughen the glass by heating and slow cooling. Grinding the glass down and polishing it into its perfect shape comes next followed by testing and coating the . This isn’t so bad for smaller lenses, but we want bigger. Much bigger.

Remote work is expanding into many other areas besides office work. Robots and remote-control technology make a greater range of tasks possible, from stocking convenience stores, to operating heavy machinery and even serving as a labor force in space. A key advantage of remote-controlled robots is that they do not require the kind of complex programming found in automated robots, such as industrial robots that work in factories. This means that remote-controlled robots are more flexible, easily adapting to work that cannot be programmed. Greater use of this technology can allow robots to take over dangerous and exhausting work, subsequently helping to deal with labor shortages and improve work environments. In this episode, we’ll look at the forefront of remote robotics, and see examples of how this technology could transform work.

[J-Innovators]

A muscle suit for back protection.

Perovskites, which have shown enormous potential as a new semiconductor for solar cells, are gaining attention as well as a potential next-generation technology to also power spacefaring missions. As scientists around the globe continue efforts toward harnessing the potential of perovskites on Earth, others are looking into how well the technology might work in the planet’s orbit.

A collaborative research effort to collectively address this important issue involving scientists from the National Renewable Laboratory (NREL) lays out guidelines to test the -tolerating properties of perovskites intended for use in .

“Radiation is not really a concern on Earth, but becomes increasingly intense as we move to higher and higher altitudes,” said Ahmad Kirmani, a postdoctoral researcher at NREL and lead author of the new paper, “Countdown to perovskite : Guidelines to performing relevant radiation-hardness experiments,” which appears in Joule.

Combating Antibiotic-Resistant Bacteria — Dr. Erin Duffy, Ph.D., Chief of Research & Development, and Kevin Outterson, ESQ., Executive Director, CARB-X.


The Combating Antibiotic-Resistant Bacteria Biopharmaceutical Accelerator (CARB-X — https://carb-x.org/) is a global non-profit partnership accelerating antibacterial products to address drug-resistant bacteria, a leading cause of death around the world. 1.27 million deaths worldwide were attributed to resistant bacterial infections in 2019.

The CARB-X portfolio is the world’s most scientifically diverse, early development pipeline of new antibiotics, vaccines, rapid diagnostics and other products and represents the only global partnership that integrates solutions for the prevention, diagnosis and treatment of life-threatening bacterial infections, translating innovation from basic research to first-in-human clinical trials.

Targeting Root Causes Of Diseases And Aging — Dr. Andrew Adams, Ph.D., Vice President, Neurodegeneration Research; Co-Director, Lilly Institute for Genetic Medicine, Eli Lilly.


Dr. Andrew Adams, Ph.D. is Vice President of Neurodegeneration Research at Eli Lilly (https://www.lilly.com/) and Co-Director of their new Lilly Institute for Genetic Medicine (https://lilly.mediaroom.com/2022-02-22-Lilly-Announc…ort-Site), a $700 million initiative to establish an institute for researching and developing genetic medicines, specifically acting at the nucleic acid level, to advance an entirely new drug class that target the root cause of diseases, an approach that is fundamentally different than medicines available today.

In this role, Dr. Adams will be responsible for leading the discovery of various new types of therapies, via both internal research, and robust collaborations with external partners.

The four Ax-1 astronauts will get to spend about 12 extra hours on the orbiting lab.


The first-ever fully private crewed mission to the International Space Station will get to spend 12 extra hours aboard the orbiting lab.

The four astronauts of Ax-1, a mission organized by Houston company Axiom Space, had been scheduled to depart the station in their SpaceX Dragon capsule at 10:35 a.m. EDT (1435 GMT) on Tuesday (April 19) and splash down off the coast of Florida early Wednesday morning (April 20).

SpaceXs brand-new Dragon spacecraft – named “Freedom” by the Crew-4 astronauts – arrived at Kennedy Space Center’s Launch Complex 39A on April 16, 2022, after making the journey from SpaceX’s processing facility at nearby Cape Canaveral Space Force Station in Florida. After Dragon is mated to the SpaceX Falcon 9 rocket, the launch vehicle will roll out to the pad and be raised to the vertical launch position.

Liftoff is scheduled for 5:26 a.m. EDT on Saturday, April 23. NASA’s Crew-4 mission is the fourth crew rotation flight on a SpaceX Dragon spacecraft and Falcon 9 rocket. NASA astronauts Kjell Lindgren and Bob Hines will serve as mission commander and pilot, respectively, and NASA astronaut Jessica Watkins and ESA (European Space Agency) astronaut Samantha Cristoforetti, will join as mission specialists.