Toggle light / dark theme

Summary: Researchers identified a novel brain network that includes the fronto-parietal networks and fusiform gyrus which helps with the encoding of visual mental imagery.

Source: Paris Brain Institute.

Every day, we call upon a unique capacity of our brain, visual mental imagery, which allows us to visualize images, objects or people ‘in our heads’. Based on the recent case of a patient with a specific brain lesion, Paolo Bartolomeo’s group (Inserm) in the PICNIC Lab at the Paris Brain Institute has identified a region that may be key in mental visualization.

Mobile robots are now being introduced into a wide variety of real-world settings, including public spaces, home environments, health care facilities and offices. Many of these robots are specifically designed to interact and collaborate with humans, helping them to complete hands-on physical tasks.

To improve the performance of on interactive and manual tasks, roboticists will need to ensure that they can effectively sense stimuli in their environment. In recent years, many engineers and material scientists have thus been trying to develop systems that can artificially replicate biological sensory processes.

Researchers at Scuola Superiore Sant’Anna, Ca’ Foscari University of Venice, Sapienza University of Rome and other institutes in Italy have recently used an artificial skin and a that could be used to improve the tactile capabilities of both existing and newly developed robots to replicate the function of the so-called Ruffini receptors. Their approach, introduced in a paper published in Nature Machine Intelligence, replicates the function of a class of cells located on the human superficial dermis (i.e., subcutaneous skin tissue), known as Ruffini receptors.

Black carbon in the atmosphere is like dressing Earth in a black shirt on a sunny day.


In new research published earlier this month, the National Oceanic and Atmospheric Agency (NOAA) simulates the effect of greatly increased spaceflight on the stratosphere. The results show that planned spaceflight over the next few decades could raise Earth’s temperature, change global air currents, and dampen the ozone layer. The study appears in the Journal of Geophysical Research: Atmosphere.

These days, it’s hard to pull up any technology-or science-oriented news site without seeing something about Elon Musk’s satellite launches, his plans to send many ships to Mars, NASA’s big slate of upcoming Artemis mission launches, the rise of private spaceflight, and the increase in national spaceflight from previously unrepresented nations. It’s a huge moment for space, so traffic is about to get worse.

Research led by Suresh Alahari, Ph.D., Professor of Biochemistry at LSU Health New Orleans schools of Medicine and Graduate Studies, suggests a combination of drugs already approved by the FDA for other cancers may be effective in treating chemo-resistant triple-negative breast cancer. The results are published in Molecular Cancer.

Triple-negative breast cancer (TNBC) tumors lack estrogen receptors, progesterone receptors, and human epidermal growth factor receptor 2 (HER2). A subtype representing 12–55% of tumors has androgen receptors (AR). Since stimulate tumor cell progression in estrogen receptor-negative breast cancers, they have become a target of triple-negative breast cancer therapy. As well, since a substantial number of patients with triple-negative breast cancer develop resistance to paclitaxel, the FDA-approved chemotherapeutic agent for triple-negative breast cancer, new therapeutic approaches are needed.

Working in a mouse model and tissue from patients with triple-negative breast cancer, the research team screened 133 FDA-approved drugs that have a therapeutic effect against androgen receptor cells. They found that ceritinib, an FDA-approved drug for lung cancers, efficiently inhibited the growth of androgen receptor triple-negative breast cancer cells. To improve the response, they also selected enzalutamide, an FDA-approved androgen receptor antagonist for prostate cancer treatment.

Forget your bulky AR headsets, smart contact lenses are coming to place augmented reality displays right there on your eyeball. Last week, Mojo Vision CEO Drew Perkins volunteered to test the first feature-complete prototype of his company’s design.

Smart wearables are all about super-portable convenience, and until scientists can plumb an AR display directly into your visual cortex, the smallest and most portable form factor we can imagine is that of a contact lens. Mojo Vision has been working on a smart contact lens design since 2015, and its latest prototype Mojo Lens packs in a pretty impressive amount of gear – especially for something that has to live behind your eyelid.

For starters, it has the world’s smallest and highest-density display capable of showing dynamic content – a green monochrome MicroLED display measuring less than 0.5 mm (0.02 in) in diameter, with a resolution of 14,000 pixels per inch. It’s got an ARM Core M0 processor, a 5-GHz radio capable of communicating at ultra-low latency, and enough accelerometers, gyroscopes and magnetometers to track your eye movements with extreme precision, allowing the image to stay stable even as you move your eyes around.