Toggle light / dark theme

Crucially, the Nissan-NASA partnership is also focusing on batteries that don’t rely on rare metals, like cobalt (of which more than half the global supply is in the Democratic Republic of the Congo, as highlighted in an episode of the New York Times Daily podcast last month), nickel, or manganese.

But getting rid of those metals means finding materials with comparable properties to replace them, which will be no simple task. Here’s where NASA’s computing chops will lend the partnership a much-needed hand. They plan to create an original material informatics platform—that is, a massive database that runs simulations of how various materials interact with one another. When the platform narrows countless options and combinations down to a few prime candidates, researchers can then start testing them.

Nissan has targeted 2028 as the year to roll out its proprietary solid-state batteries. How realistic that timing turns out to be remains to be seen (Toyota is even more ambitious, aiming to have its own vehicles with solid-state batteries on the market by 2025), b ut Nissan is putting its money where its mouth is with plans to open a pilot plant in Japan in 2024. How this plays out will be revelatory, as scaling up manufacturing of solid-state batteries has produced unexpected complications in the past. Encouragingly, startup Solid Power ha s also targeted 2028 for comm ercializing its solid-state batteries.

High-amplitude ultrasound pulses have been used to partially destroy liver tumors in rats, triggering the rodents’ immune systems to clear the remaining cancerous cells and prevent the disease from spreading or returning. Presenting their findings in the journal Cancers, the researchers behind this breakthrough say their technique could lead to effective, non-invasive treatments for some of the most intractable cancers in human patients.

Liver cancer certainly falls into that category, and is associated with a five-year survival rate of just 18 percent in the US. Though many treatment options are available, liver tumors have a tendency to metastasize or recur after these interventions.

In their study, the authors explain that conventional cancer treatments like chemotherapy, radiotherapy, and thermal ablation are effective at destroying tumors, yet also trigger a somewhat unpredictable immune reaction which can be anti-tumor or pro-tumor. Furthermore, they note that the size, location, and stage of a tumor can sometimes make it impossible to target the entire tissue mass with existing treatments.

Elon Musk believes his Neuralink brain chip could help treat morbid obesity. Experts say the billionaire’s dream isn’t as far-fetched as it may seem.

“I don’t think it is any more implausible than other claims for the potential of neurotechnology,” Professor Andrew Jackson, an expert in neural interfaces at Newcastle University, told Insider.

Musk made the suggestion in a TED interview on April 14, thereby adding “morbid obesity” to a growing list of ailments he believes Neuralink could help treat.

Over the course of almost 60 years, the information age has given the world the internet, smart phones, and lightning-fast computers. This has been made possible by about doubling the number of transistors that can be packed onto a computer chip every two years, resulting in billions of atomic-scale transistors that can fit on a fingernail-sized device. Even individual atoms may be observed and counted within such “atomic scale” lengths.

Physical limit

With this doubling reaching its physical limit, the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) has joined industry efforts to prolong the process and find new techniques to make ever-more powerful, efficient, and cost-effective chips. In the first PPPL research conducted under a Cooperative Research and Development Agreement (CRADA) with Lam Research Corp., a global producer of chip-making equipment, laboratory scientists properly predicted a fundamental phase in atomic-scale chip production through the use of modeling.